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0.L.marshal” B OQp Corrosion-Induced Creep
"Lt | and the Shedding of Oxide Pest

Y. lvshin
¢.oicericn | From Metal Plates
Johnson Controls, Inc., We consider a boundary value problem for a flat plate of an originally ductile metal that
. P.0. Box 591, is subject to surface corrosion. Corrosion is modeled with the aid of two mobile inter-
Milwaukee, Wi 53201-0591 faces. The leading interface is an oxidation front where volumetric expansion generates

stress. This interface is initially present, with its location taken as prescribed. The trailing

2 interface is a failure front associated with the shedding of oxide pest. This interface is not
T. J Pe.nc.e initially present, rather it first appears at some finite time into the process, and is deter-
Department of Mechanical Engineering, mined via a stress-based failure criterion. The problem is reduced to a set of ordinary
Michigan State University, differential equations whose form changes depending on whether or not shedding has
East Lansing, MI 48824-1226 initiated. Numerical treatment shows a substantial increase in creep rate due to oxide
e-mail: pence@egr.msu.edu shedding.[DOI: 10.1115/1.1604837
1 Introduction vided by Bernsteirf9] and by Touati et al[10] via the consider-

n of boundary value problems in the setting of infinitesimal

in. This provides a framework for determining the evolution of

stress fields in the oxide. Here we extend this type of creep
lysis so as to consider the possibility of oxide failure in the

nt that the oxide stresses become tensile.

We consider an appropriate boundary value problem for a flat

We present a simple treatment for certain stress-related iss@%’r%
pertaining to the formation, growth, and degradation of a corrr
sion surface layer on an infinite plate. The formulation is in terms -
of a boundary value problem wherein the metal is ductile and tlgg/e
oxide is brittle. Corrosion near each surface is modeled with the

aid of two mobile interfaces. The leading interface is an oxidatio&ate of original thickness B subject to advancing oxidation

front where volumedric expan5|0|(1d_es_cr|bed by the Pilling- fronts X= = D,(t) beginning from each of the two plate surfaces
Bedworth ratio generates stress. This interface is taken to coir_ ;| view of the system symmetry, the problem is formu-
cide with the external boundary &0 with subsequent motion Iatea oﬁ '

. e e . : G=X<H paying special attention to an infinitesimal
into the plate interior. The trailing interface is a failure front as; baying sp

. . ) - ; . Strain description that allows each locati®nto creep prior to
sociated with the shedding of oxide pest. This front also first aggiqation and to undergo free volume expansion at its instant of

pears at the eXte"?a' bo_undary, but at some l]me,f_>0 assoCl- gyidation. After oxidation this inelastic strain is locked in, where-
ated with the satisfaction of an appropriate failure condition

; X upon all additional strain for locations in the oxidB {(t) <X
Passage of this second front sheds material from the plate ther ) is due solely to elastic effects. Due to the in-plane constraint

generating corrosion pest found either as loose surface scale oLaS,qeq by the parallel metal and oxide zoties., displacement

exte_rnal de_brls. L . . continuity), the in-plane stress is originally tensile in the metal
Since oxide formation involves volumetric expansion, the o3y compressive in the oxide. The in-plane compressive stress in

mation of oxide on originally unstressed metal will generate stregs. oxide is minimized at the external surfage=H. since this

if the oxide is constrained so that this volume is not attaifizl, |5cation does not undergo creep prior to oxidation.

Such a constraint occurs when transformation from metal to oxideT,¢ simple flat plate geometry permits a boundary value prob-

takes place in the interior of an oxide layer as for example will bgm treatment that reduces to a system of ordinary differential
the case if oxygen ions have sufficiently higher mobility thagquations with time as the independent variable. On this basis we
metal ions within the oxide. The advance of oxidation fronts caghow that the stress fields in the oxide can evolve with time from
then be modeled on the basis of the continuum mechanics ptate of global compression to a state with localized tensions. On
diffusion, [2]. The free volume change associated with oxidatiofhe assumption that tension leads to oxide failure in the form of
is described with the aid of the Pilling-Bedworth rati®Br corrosion pest, this naturally leads to a description involving both
which is regarded as a material parameter. The PBr is tabulaigd oxidation interfaceX= D o,(t) and a shedding interfack
for standard metal-to-oxide transformations of engineering signiti:-Dpes(t). The latter is described by a failure condition in rate
cance, and associated eigenstrain-type problems have been @#h, and, as we show, the mathematical formulation gives rise to
lyzed for the constraint stresses associated with oxide formatififerential equations with retarded time arguments. In the ex-
[3-5]. Oxide degradation due to such stress is addressg&i#h  ample considered here these equations are treated by procedures
The combined effects of diffusion and stress in the setting fat are standard in the study of differential equations with re-
carefully posed boundary value problems is discussd@]in tarded time arguments.

For ductile metals, creep provides a mechanism for stress reSection 2 gives the general formulation of the governing equa-
laxation. Analysis of creep relaxation during oxide growth is proions describing these processes. Section 3 treats these equations

so long as the oxide remains in a state of compressive stress.

;?gﬁﬁjgdc;?éss ;(;Tri%ggied:ﬁszeﬁgoazz?egge*gs co-authors. During this period the retarded time is the instant of first oxide

Contributed by the Applied Mephanic; Division oHE AMERICAN SOCIETY OF formatlor_" and the aSS.OCIated retarded t!me terms evaluate.to Zero.
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLIEDME- A NUMerical example is presented for this case demonstrating that
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 3the stress in the oxide will change from compressive to tensile,
2002; final revision, Mar. 27, 2003. Associate Editor: E. Arruda. Discussion on thgith the change first occurring at the plate’s external surface. Sec-

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenttﬁﬁn 4 extends the treatment to account for shedding of the surface
Mechanical and Environmental Engineering University of California—Santa Barbara,

Santa Barbara, CA 93106-5070, and will be accepted until four months after fir%?(.ide Wheh the in-pllane stress beco!‘nes.sufﬁcigntly tenSi_Ie- For
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. this shedding analysis, the retarded time is the time at which the
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currently failing oxide had experienced its prior transformationxide, however, is not able to creep. The inelastic strain in the
from metal to oxide. This time value is not known in advance anakide is instead due to the combination of two effects, both of
becomes an additional system variable. The associated increasehich cease after oxidation occurs. The first effect is the creep
the number of system unknowns is compensated by a supplemprer to oxidation during which time significant metal flow can
tal differential equation that follows from the rate form of theake place. The second effect is the volumetric expansion from the
failure condition. The resulting formulation remains well-posednetal-to-oxide transformation. Consequently, for the oxide, the
and the numerical example is continued into the shedding reginieelastic strain is locked in by the oxidation process and so de-
After a brief transient, the oxide layer is found to assume a thickends on the time at which oxidation occurred. This time depends
ness that is relatively constant. Namely, the rate of thickness X and is independent @f and so accounts fdy’xng'xx(x) and
variation is approximately an order of magnitude less than the rate — 31 (%) Also, sinceé_\f :,gyg_;:;y, with &,,=8,,(t) and

. . g Y y . R . \
of corrosion advance. Further, the metal core carries addltloné’lyzsiy(x) it follows that&5, = 55,(X,t). Neither the oxide elas-

strainse€ by themselves, nor the oxide inelastic straihdy
emselves, need satisfy the standard compatibility conditions that
ensure an associated displacement field. Thus it is generally not
: possible to decompose the displacement in the oxide into an elas-
2 The General Formulation tic displacement and an inelastic displacement.
The geometrical description distinguishes between locations inWe now turn to consider the stresses. The traction-free bound-
a flat plate described with respect to the reference configuratiary condition at the plate surface, the stress equations of equilib-
(att=0) and with respect to the evolving current configuratioium and the continuity of traction across the metal/oxide inter-
(for t>0). For the plate geometry under consideration here, Wace give o,,=o,,=0. The remaining stresse&yy, ayy are
let X give the through thickness coordinate, aivdZ) provide the connected to the elastic strains by the standard relations of isotro-
in-plane coordinates with respect to the reference configuratiqiic linear elasticity, giving
Symmetry is assumed with respect to the midplxre0 and we
consider locations € X<H. This region is partitioned between
base meta] &Xspoxy(t), intact oxide Doxly(t)sXs.DPes(t)., E_ 2v L _E £
and corrosion debri® ,..(t)<X=<H. Corrosion debris Is oxide Exx= msyy' o‘yy—msyy,
that has been degraded due to stress and effectively shed from the
system so thaK=D(t) is regarded as a shedding front. The
transition from intact oxide to corrosion debris is described by a 25 E
failure condition in terms of stress. There is no oxide at the initial gEX: - —AéyEy, &yy=—A§5y-
time t=0 when the system is all metal so thBi,,(0)=H, (1-v) (1-v)
D,es(0)=H. Oxidation begins immediately so that,(t) is de-
creasing with time. For some initial time periodk@<t;; the A . ) o
stress in the oxide is such that no failure occurs, so Ehat(t) ~HereE, » E, v denote the Young's modulus and Poisson’s ratio in
=H for 0<t<ty;. First failure occurs aX=H, t=t;; whereupon the metal and oxide, respectively. Thus equibiaxial stress prevails,
Dpes(t) is decreasing with time fot>t;. Locations will be with oyy= 0y (X,1), ayy=0y,(1). )
described with respect to the current configuration using !tis assumed that the edges of the plate are traction free. Con-
a lower case letter convention for distance quantitiexedquently, the tractions on any internal plane of constaur
(%,Y,Z,oxy(), pes(t) ). constantZ are self-equilibrated. In view of the system symmetry
In order to separately denote field quantities in the oxide frofiS gives
those in the metal, a superposed " is used to distinguish field
quantities in the oxide. Leti;, &, oy, U;, &;, oy denote o) D)
components of displacement, strain, and stress in the metal and ™ - 2
oxide, respectively. Th¢X,Y,Z} system provides a principle f Tyy(D(1+2x(1))dé+ jDoxy(l) oyy(§)(1+e,4(&,1))dE
frame by geometrical symmetry and uniformity YrandZ of the
corrosion process. There is no inherent in-plane length scale, con- =0, 2
sequently the strain and stress fields are independeYitanid Z.
The equivalence of th¥ andZ-directions allows us to eliminat

in terms ofY. Stress and strain are therefore described in terms Yfi€re the factors (% e,,) and (1+e,,) account for plate thin-
~oa -~ ning prior to oxidation and volumetric expansion upon oxidation.

Exxr Eyyr Txxs Oyys Exxr Eyys Oxxs Tyy, Where lower case indi- _ . . ;
ces are employed for notational ease. All strains are measufifice also that only the intact portion of the oxi@g,(t)<X
pes(t) is regarded as capable of supporting load.

with respect to the reference configuration. The metal undergo% Siming to the inelastic strai : dtob |
homogeneous deformation, so thal=e,,(t), &,,=&,,(t). Dis- eturning to the ine als ic s_ralns,I creep is assumed to be vo
placement continuity across the interface Do,(t) requires that UMe Preserving so that,,(t) =—2e,,(t). Making appropriate
eyy=&yy(t). The remaining strain componesy, is dependent on replacements in Ed2) now gives

both X and t as explained in what follows, so that,,

=2g,(X,t). These conditions yield a single-valued displace-

tensile load, and this significantly increases the overall creep r. {8y
Section 5 then provides some brief summary comments :}L
conclusions.

ment field upon integration. Taking the plate origin as fixed £ o Dpestt) . o
gives: U,=0,=Ye, (1), U,=0,=Zeyy(1), U=Xeu(t), Oy 15 eV = 2 (1)Dog() + 75 Dexy(t) eyy(&,0)
=Doxy(t)exx(t)+fDoXy(t)8xx(§:t)d§- 25
The strains in both the metal and the oxide are decomposed into x| 1+35 L 1’) sE (£t )d -0 3
the sum of an elastic straiisuperscript) and an inelastic strain Exd €) 1-v eyyl&,0) |de=0, (3)
(superscript) as follows:
e T e =ex(t), S5 (X, 85 (X) =8, (X,1), where we have ignored the contribution of the elastic strain in the

~ ~ ~ metaleE, as a negligible effect in comparison to the creep strain
85 (0 + 8l (=g, (=8, ()=85,(X,0+8,,(X). (1) MEEox gig P P

~ ~ . . . XX* - . - B . - .
Observe that!, andz-:{,y do not depend on This is explained as  Turning to consider the inelastic strains in the oxide dgnd
follows. The inelastic strain in the metal is due to creep. The, give the out-of-plane and in-plane stress-free strain associated

626 / Vol. 70, SEPTEMBER 2003 Transactions of the ASME



with the transformation from metal to oxide. These transformatiomhere we have introduced the nondimensional parameters
strains are regarded as constants obeyiag+2a,+1
= AV yide! AV meta» Which is known as the Pilling-Bedworth ratio (1-v)E 2v
(PBp in the oxidation literature[1]. The inelastic strains in the —==8, FEX-
oxide register the combined effect of creep prior to oxidation and (1-vE v
transformation strain upon oxidation. For the in-plane directons _ .
and Z, this inelastic strain results in an in-plane line segment &fliminating e, (X,t) between Eqs(4) and(5) gives
original lengthl, first creeping to the length (—H.s;,y)lo and sec- . |
ond transforming to the length (I-lay)(l-i-slyy)lo at the time of BDoxy(Deyy()(1—2ey,(1))
oxidation. The difficulty in describing this process stems from the +(8E (1) + & (1) — @) (Deeft) — Dnf(t) — 26(1))
fact that the creep strain valug,, that must be used in this de- yy yy yrhTpes o
scription is not the current value of creep strain, but rather is the f(¢(t)*2¢(t))*x(8)€y(t)+ei,y(t)* ay)Z(Dpes{t)
creep strain in effect at the time that the location transformed from
metal to oxide. Accordingly, define the functidi(X) that, for —Dowy(1) = 2x(y,(t) + &y () — ay) (1) + x()=0  (6)
each location in the oxide, gives the prior time at which that
location had transformed from metal to oxide. Since oxide locavhere the following auxiliary functions
tions are here described in terms of reference locatiahfollows
that the prior time functionl(X) is the functional inverse to Dpe
Doxy(t). Thus Tp(Dge(t)) =t and Do (Tp(X))=X. Once the ¢(1)= f
location X has oxidized, the inelastic strain in the oxide remains
fixed giving 8}, (X) = e, + (@, +1)&}(Tp(X)). A similar expres-
sion holds foré'xx, which, upon use of the volume preservatio
condition for creep strains, gives éLX(X)z ay—2(ay
+1)e,,(Tp(X)). The terms involving:) (T (X)) are a new fea-
ture of the present treatment so as to validate the analysis to ti
for which s'yy(t) is r_10_|onger small compared @, and ay.

In what follows, it is assumed that, and a, are each small

stt) | Dpestt) | 2
el (To()dE,  p(t)= f (8}(Tp(£)%dé,

Doxy(t) Doxy(t)

register the integrated effect of the different prior creep cutoff
imes. Note thats(t)= £yy(To(Dpes(t))) D pes(t) — £yy(t) Doxy(t)
where the superposed dot denotes time differentiation. A corre-

onding expression holds f@r(t). It is convenient to express
&se rate forms as

o . [
compared with one, so that Eq4) and(3) give #=(2yy°To°Dpest Dpesi— &yyDoxy (@)
E | _~E | . . .
e+ e =en (X U+ aytey(TolX)), ()= (el TooD pestDies— () Doy (8)
for D gy (1) <X<Dpesft), 4)

Here o denotes functional composition. The argument
To(Dpes(t)) is aretarded time. Namel pes(t) > Doy (1) implies
To(Dpes(t)) <To(Dow(t)) =t S0 thate,,°TpeD pegis determined
. from previously obtained past values &, .

—Xxeyy(§1))dé=0, (5)  The rate form for Eq(6) is

Dpesit) _
BD (D65, (1) (126l (1)) + f R (ED(1— 28l (Tp(£)

oxy'

|
(_ZBDoxySEy"'Dpest_Doxy_2¢_2X((85y+8|yy_ay)(Dpest_Doxy)_ﬁb))élyy
+(:8Doxy(l_28{/y)+Dpest_Doxy_2¢_2X((85y+8;/y_ay)(Dpest_Doxy)_(ﬁ))éEy

+(—285,— 26} — 1+ 2x(s5,+ el — @) b+ (2— X) ¥

|
yy

_ E | E I 2\ E E E I E I 2 r
—(—ayy—syy-i- ay+x(syy+ayy— ay) )Dpesﬁ-(—ﬁayy-i-Zﬁsyya +egytey,— ay—x(syy-i-ayy—ay) )Doxy - 9)

If Dpesy Doxy, @andTp, are prescribed, then the S&Y—(9) com-  setting, the effective stress iger=0y,~E/(1-1)el,, and the

prises three quasi-linear ordinary differential equations relatingress deviator components ag= —2/30,y, s,,=1/30,,. This
the four functions of time, , &y, ¢, andy. Afourth equation to then gives

complete the formulation is now obtained from the creep consti-

tutive law. _ e ( E )n

A standard model for isochoric creep at high homologous tem- s'yy=5 TSEV (20)
perature involves a creep strain rd@j/dt that is related to stress (1=v)

ajj via dai'j/dt=3C/2(oeﬁ)”’1sj where C and n are material
creep parameterd11]. Here s is the stress deviatos;;= o,

—(owd3)dij , andoe is the effective stress

as an additional differential equation to complement the previous
set of Eqs(7)—~(9) rel_atlngsﬁy, s{,y, ¢, andy.

It remains to specify rules for the determinationif,,(t) and
Dpes(t). Recall thatD pes(t)=H prior to shedding. Shedding be-
Tei= ((Oxx— Oyy) *+ (0 gy = 0,)°+ (05, 04 gins once a failure criterion is met and the subsequent determina-

tion of the now free boundar ,.s(t) involves reference to this
+6(‘7>2<y+ ‘Tszfz+ o2 2. failure criterion. Section 3 giveps the treatment prior to shedding
and Section 4 gives the treatment during shedding.
For uniaxial load this reduces te'/dt=Co", enabling the de-  The specification ofD,(t) is most naturally accomplished
termination ofC andn via standard experimental procedures. Fowith respect to the current configuration locaticoh,(t)
the states of equibiaxial stress encountered in the present plaﬁz(ﬂ—Zs;,y(t))Doxy(t). We shall eventually consider an example
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total strain,% total strain,?

0.4
creep (III) 1.4
0.35 1.2
0.3 creep (III)
1
0.25
0.9 primitive creep (1) 0.8
0.6
0.15 primitive creep (II)
0.1 0.4
pure elastic (f)
0.05 0.2 -~ pure elastic (I}
0.5 1 1.5 2 2.5 3dus 10 20 30 40 50 60 days
Fig. 1 Overall in-plane strain syy=éyy(><100) is the same in the metal and the oxide due to displacement
continuity (Eqg. (1)). After the first few days, accounting for the additional oxide strain due to prior creep (I gives
rise to significantly larger total strain than either an elastic analysis (I) or the primitive analysis that neglects
prior creep (Il). In particular, the total strain under  (Ill) is not bounded by the value  a,=0.003, the asymptote for
(1) and (I1).

where the corrosion front advance with respect to the metal in the ) t )
current configuration is described by a rate paramgteo that B(1)=—z,,()Doy(t), B(1)= —f eyy() Doy(t)dt,
doxy(t) = — . °

In general, descriptions of oxidation front movement in terms _ t _
of chemlcal species diffusion can lead to mathematical issues thaj(t) = _(elyy(t))zDoxy(t)v W(t)=— f (S'yy(t))ZDoxy(t)dt.
require detailed treatment even in the absence of the creep mecha- 0
nisms under study hergl2]. Rate factors such asare dependent
on the local electrochemical environmebltage, temperature, In particular, initial conditions o
etc) and the influence of the oxide as a corrosion shield. If shield-
ing is significant, then the corrosion rate depends on the oxide £,,(0)=0, £,,(0)=0, $(0)=0, ¥(0)=0.
layer thickness. If, for example, the corrosion rate involves a con- ) ) )
tribution that is proportional to the concentration of the diﬁusin%ig have numerically solved the set of four differential Eq%-—
oxygen species at the oxidation front, and a linear concentraticH)) subject to these specializations and initial conditions for the
gradient is in place with respect to distance from the sheddimgse in which dg(t)=—un s0 that Dgy(t)=(H—ut)/
front, then the rate factor involves a contribution that is inversem—zg;y(t))_ Parameter values employed in this example are rep-
proportional to the oxide thicknesSpes(t) —doy(t). Prior to resentative of a high-temperature metal/oxide system using units
shedding, any such contribution provides a continual slowdown §1 time in days, length in mm, force in Newtonis:=0.0635, 1.
the c_orrosion ratgwhich esse_ntia!ly goes Iikg $ with Some  _g 26x 104, E=1.67x 10", u=0.434,|§=2.45>< 10°, 7=0.25,
possible departure due to oxidation expansiddnce shedding —0.003,C=3.93<10 5 n=3.78. The transformation strain

beglns_, this slowdown is abated, and the determmatu_)n of t £glue a,=0.003 gives results that calibrate well with creep rates
corrosion rate would then become coupled to the shedding ang “proprietary studies. It is conjecturel®,13], that only a small

SIS. Eyans[l] can be co.nsulted for additional insight into thefraction of the transformation strain is expressed in the in-plane
associated metallurgical issues. For the purposes of the examples iohs i e a<a
y ety X

presented in what follows, these effects will not be considere "The curve labeledlll) in Fi . . .
: P g. 1 gives the in-plane strai, (t)
and the rate factop will be regarded as constant. This is iNtor the numerical solution to Eq€7)—(10). It can be read from

Kocping wih the previously mentioned numerical studies of s figure that, (1) <0.003- a, for (<135 ands,y(1)>0.003
B =a, for t>1.35. It is the effect of creep prior to oxidation that
permitse,, to exceeda,. For comparison sake, two additional
i i . curves are shown. Curvg) is the result of a pure elastic analysis
3 Creep Prior to Oxide Shedding in which &},=zy,=0. This analysis gives closed-form algebraic
Initially, the oxide expansion gives rise to a tensile stress in tlexpressions. Curv@l) is for an analysis that incorporates creep in
metal and a compressive stress in the oxide. The stress in the metal, but which does not include the effect of prior creep in
oxide is dependent oX. For any locationX this stress remains computing the inelastic strain in the oxide, i,é;yz ay, QLX
compressive until the in-plane expansion matches the natuealy, . Thus the analysis givingl) involves no explicit prior time
(stress-freg length of the oxide at the location under considerreference and is similar in spirit to that #,10]. Such a “primi-
ation. Since the oxide at the surfa¥e-H was the first to trans- tive creep analysis” is reasonable for some short period of time
form (it experiences no prior cregpt has the smallest natural during which the creep strain is small compared to the corre-
length. Consequently, the oxide at the surface is the first to beaggonding transformation strain.
tensile load. The brittle nature of many oxides often renders themin both (1) and(Il) the straine,(t) does not exceed, , which
incapable of sustaining a significant tensile load and we reggsgbvides the large time asymptote for the correspondg
this as leading to shedding. In this section we analyze th@rves. Figure 2 shows the stress in the metal for all three treat-
creep process prior to any such tensile failure induceglents. A pure elastic treatment involves a continually increasing
shedding. Accordingly,Dpes(t) =H, Tp(Dpes(t))=To(H)=0, biaxial tensile stressr,,. This stress is relieved by creep relax-
s'yy(TD(DpeS(t))):O, so that the integral definition ap(t) and ation in both creep treatments with treatméh) providing the
(1) prior to shedding involves the full range of prior timet].  quickest relief. This is because the inelastic strain in the oxide,
Namely, Eqs(7) and(8) give which is driving the creep, is artificially low in the treatmeiit)

E

Sy Eyy. &, i are given by
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stress, kG mm"2 stress, kG mm"2

pure elastic (I)

\ .
0.8 pure efastic (I)

creep (I}

i

creep (I11)

rimitive creep (II
pri p (1) primitive creep (1)

T 2 3 4 5 & qdars 10 20 30 40 50 60 days
Fig. 2 Creep allows the stress in the metal o, to relax from that predicted by a pure elastic analysis (). Account-
ing for oxide strain magnification due to prior creep (Ill) gives higher stress than an analysis that ignores this

effect (Il).

due to the neglect of prior creep. The treatment of interest heggtical equibiaxial stres&¢,.0 that is regarded here as a ma-
(1) provides a biaxial tensile stress,, that is intermediate terial property. This section presents the analytical development
between the simplified treatmerg and (ll). for describing this shedding process and gauging its effect on

The variation of the stresfsyy with position in the oxide is an system growth. Analytically, the reference configuration location
essential feature of the present treatmi@ih. All of the stresses Of the shedding fronb .(t) becomes an unknown that must be
oy, for these different treatments 1,11l ) match the pure elastic determined from the condition

value —E/(1-v)ay, att=0. The stressr, in the simpler treat-
ments(l) and (II) is uniform and tends to zero as the metal is -
consumed. However, for the treatmdiit) of interest here, the A _ (1-v) .

~ . ! . A . syy( D pes{t) 1t) O shed: (11)
stress oy, is nonuniform with maximum compression at
=Deft). At the outer surface, the stress, transitions from
compressive to tensile dt=1.35 corresponding to the time at
whiche,,= a, . Figure 3 shows théyy stress variation wi:[IX for Shedding begins at the time of first failure ts; as determjned on
increasing five-day intervals. After oxidation, the stregs at the basis of the pre-shedding analysis via—@)/Eogneq
each material locatioX is increasing with time because the total_ ;E (H,ti)=

_ _ _ _ eca Sy ey (ter) + ey (ti) —ay. The initial values of
strain ey, is approaching the locked-in portios,,(X)= e, 85y(t”)l 8;}/(,[“)] &(ts), ¥(ts;) for the shedding analysis are

+e4,(Tp(X)). Accordingly, each such material location transithen determined from the pre-shedding analysis via continuity at

tions from compressive, to tensileoy, at the timet that solves =t .

aytey(To(X)) =zy(1). The locationD ,.s(t) can be tracked in terms of an additional,
and as yet undetermined, auxiliary functie¢t) defined via

4 Oxide Shedding

The numerical example of the previous sectieng., Fig. 3 T(1)=Tp(Dpesft)), = Dpes(t) =Dy 7(1)).
shows thato,y(Doy(t),t)<0 with day,/dt>0 and da,/IX
>0 on D, (t)<X<H. In particular, each locatioi eventually ) _ ) _
obeysa,,>0. If the oxide is unable to sustain such tensile loadNote that7(t)<t and thatr(t) is the time at which the oxide
ing, then the analysis must be modified as described next. location shed at had previously oxidized from the original metal.
Since the stress in the oxide is completely determined by th@ particular, 7(t;;) = 0. Evaluating(4) at X=Dpe(t) and elimi-
equibiaxial streséryy(X), such failure can be characterized by matingé)'fy(Dpes(t),t) with the aid of Eq.(11) now gives

oxide/electrolyte interface stress,kG mm 2

stress, kG mm"2 atx =.0635
t =60 days
300 300/
t=20 days
200
200 é
g t=5 days
100 t=60 days A/Bﬁ‘
/
0.01 0.02 0.03 6 e 0.0625 0.0635
— }
-100 t=5 davs oxide/electrolyte interface

metal/oxide interface (advancing into the metal)
Fig. 3 Variation of the oxide stress &yy through the oxide thickness as the oxide layer progresses into the base

metal. Different curves represent different five day intervals, ranging from t=5 to t=60. Graph on right provides
magnification near the external surface, = x=0.0635.
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total strain, % total strain,$%
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Shedding analysis: creep (1V)
1.2 10
1 2 Shedding analysis: creep (IV)
0.8
6
0.6 hedd
sheddin:
0.4 initiationg : creep (III) 4
. -
0.2 i 2 creep (1)
: days
1y 2 3 4 5 57710 15 20 25 309%S

Fig. 4 Once shedding begins at t the strain increases dramatically ~ (IV) compared to a situation in which oxide
under tension does not fail  (Ill). This strain increase for  (IV) is due to the loss of tensile load carrying capacity in the
oxide, which increases the tensile stress in the metal as shown in Fig. 5.

(1-2) . differential equations relating the five functions of ti el
Fshed= £y (1) + £}y (1) — ay— ey ((1)). &, ¥, and 5 o

The rate form of this equation, in conjunction with the four pre- n

vious rate Egs.(7), (8), (9), and (10) under the replacement & :E E oF

Dpes(t) =Doy(7(t)), now provides five quasi-linear ordinary wo2l(d-v) W)

|
(_ZIBDoxySEy"'(Doxy(’T)_ Doxy_2¢_2X((85y+8;/y_ ay)((Doxy*7) = Doyy) — Cb))si/y
+ (ﬂDoxy(l_zsi/y) +(Do><y°7') - Doxy_2¢_2X((55y+ slyy_ ay)((DoxyoT) - Doxy)_ 9{’))85)/

+(— 285y— 28'),),— 1+ 2X(85y+ s{,y— ay))(-j)-‘r (2—x) ¢+ (85y+ slyy— ay_X(85y+ s{,y— ay)z)(boxyor)'r

:(_385y+ Zﬂsgyslyﬁasy"'slyy_ “y_X(85y+8l>'y_ ay)?) Doy,
o— (é!/y"T)(DoxyOT) 7= _8|ny0xy:
ll/f(élyy"T)z(DoxyoT).T: 7(é|yy)2Doxyv

1L E ol C_
ey teyy (syyOT)T—O.

These five equations are to be solved ffort;; subject tor(ts;)  oxide thickness increases monotonically. Immediately after shed-
=0 andsSy' g'yy, ¢, ¥ continuity att=t;;, where the prescrip- ding initiates, this thickness exhibits a rapid drop, followed by a
tion for Do,,(t) continues from the pre-shedding analysis. Notbrief transient prior to a period of relatively slow decline in thick-
also that ness. The rate of the oxide thickness decline after this transient is
found to be more than an order of magnitude lower than the rate

¢(t):_J't N (t)D (t)dt of corrosion advance.
yy Ooxy’ ’
(t)

5 Concluding Remarks

t
—_ | 2
H)=- Jr(t)(ayy(t)) Dox(t)dt. A treatment has been presented for creep that is driven solely
by oxidation. The main physical assumptions of the treatment
We have extended the numerical solution presented in Sectiogghcern the mechanical behavior of the base metal, the oxidation
into the shedding regime for the particular cagge~=0, i.e., an process that transforms metal to oxide, and the mechanical prop-
oxide that is not capable of supporting any tensile load whatsgrties of the resulting oxide. The base metal is ductile and de-
ever. From the analysis of the previous section it follows that scribed by a conventional viscoplastic model. It does not fail in
=1.35. Figure 4 provides a comparison betwes)) for the the sense that it is always able to support load. Oxidation corro-
present shedding analydi%/) with ¢, for the analysis in which sjon proceeds via the movement of an interface into the base
shedding is ignoredlll). Shedding increases both the straij metal. Here this rate of advance is specified a priori. Oxidation is
and the stress,, (Fig. 5). This is because the tensile stress thabcalized at this front and the material experiences volumetric
would have been carried by the shed oxide must be carried instegghansion upon conversion from metal to oxide. Oxide is re-
by the metallic core, increasing,, and hencé'yy. In the numeri- garded as brittle elastic, failing in tension but not in compression.
cal example, stress relaxation had already ensued prior to shEdHed oxide ceases to support any mechanical load and can be
ding. The onset of shedding arrests this stress decline, after whielgarded as physically scaling off.
the stressr,, is found to increase at a mild rate. Figure 6 charts Analyzing this process via an associated boundary value prob-
the change in oxide thickness with time. Prior to shedding, them requires a description for inelastic strain in the oxide that
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Fig. 5 In this example, oxide shedding begins after stress relaxation has already begun in the metal. Shedding
leads to additional loading of the metal, and the post-shedding stress experiences a mild increase with time.

captures both creep prior to oxidation and volumetric strain of thel The volumetric expansion gives rise to stress. Initially this
metal-to-oxide transformation. This gives rise to the first new featress is tensile in the metal and compressive in the oxide. This is
ture of the present treatment: tensile stress at the outer surfacgyefl known.

the oxide layer. This tensile stress first appears at a finite time aftep  As the oxidation front proceeds into the base metal, the
the beginning of oxidation and leads to the second new feature\@fiumetric expansion strain is leveraged against the strain due to

the present treatment: a shedding front that is not specifiedp,:-}Or creep. For the simple flat-plate geometry, the resulting in-

prl_(l_);’:é boundary value problem for the case of a flat-late geo elastic strain in the oxide is position dependent and time indepen-
undary vaiue probie plate 9eotliz; Higher inelastic strains correlate with later locations of oxi-
etry has a different formulation before and after the initiation o

the shedding front. Prior to the development of the shedding froﬁ@t'on' The stress. at a flxgd location in the oxide is most
the associated boundary value problem can be reduced to a syst@iPressive upon first formation. o o
of four ordinary differential equations for four dependent vari- 3 The compressive stress at each location in the oxide dimin-
ables with time as the independent variable. The four dependéftes with time due to creep elongation of the metal. When the
variables are: an elastic strain in the metal, a creep strain in #f€ep elongation matches the inelastic strain for a particular oxide
metal, and two auxiliary functions that describe the integratddcation, then this oxide location is fully stress relieved. Addi-
effect of creep prior to oxidation. Numerical solution determineonal creep elongation would put such an oxide site into tension.
the time at which the oxide on the external surface first becom€&ke external surface of the oxide is the first to become tensile.
tensile, which in turn initiates the shedding front. 4 If the oxide is unable to support tensile load then a failure
After the development of the shedding front, the associatgnt forms in the oxide. This front proceeds into the interior of
boundary value problem can be reduced to a system of five orghe oxide beginning from the external surface and can be regarded
nary differential equations for five dependent variables. Four g 4 |ocation for the shedding of oxide pest. This shedding front
these five dependent variables are the four that describe the QI- 1o oxidation front, but could eventually advance at approxi-

cess prior to failure. Thg new de_pend_ent variable is a rgtardﬁ,l tely the same rate as the oxidation front, leading to an essen-
time argument that describes the time interval between oxide for-

mation and oxide shedding. Four of the five differential equatio @"y. constant_thickness oxide Iayt_er. This shedding increases the
are continuations of the previous set and include new terms ﬁer_nsne stress in the metal and so increases the creep rate.
volving the four original dependent variables evaluated at the re-While the first of these four features is widely appreciated, the
tarded time. The fifth differential equation is a rate form of theemaining three features have received much less attention espe-
oxide failure condition. The system can be solved numerically. Wgajly with regard to their interaction. In particular, the formation
find that the main features of the numerical solution to this boungpq advance of a shedding front in the oxide, while creep is on-
ary value problem are as follows. going in the metal, gives rise to interactions that can treated by
formulating and solving a boundary value problem of the type
presented here. Presumably, similar treatments could apply to

OxThs, microns geometries other than the flat plate presented here.
1.2 ~ shedding
initiation
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Mechancial, Materials and Aerospace The motion of a solid-liquid interface in a finite one-dimensional medium, subject to a
Engineering Department, fluptuatlng bou_ndary temperature, is analyzed. T_he fluctuatlo_ns are assumed to be peri-
lllinois Institute of Technology, odic. The solution method involves a semi-analytic approach in which, at any given time,
Engineering 1 Building, the spatial temperature distributions are represented in infinite series. The effect of the
10 West 32nd Street. solid, liquid Stefan numbers and the unsteady boundary temperature variation is investi-
Chicago, IL 60616-3793 gated. The results showed a retrograde motion of the solidification front for large liquid
Fellow ASME Stefan numberd.DOI: 10.1115/1.1604836
Introduction been used in the solution of moving boundary problems. Although

A phase change in an initially single-phase medium can a?:Eost of the conventional methods can be applied to these prob-

: . ms, the presence of the moving boundary results in complex
started by changing the temperature at the boundaries 10 a ve Ofmulations, whose solutions are difficult to obtain. Methods
which is higher or lower than the melting temperature dependi ’ :

Red for solving moving boundary problems include the approxi-

ionrt] thtﬁ sta:ie icr)1f tlhek:nltlalfpnﬁ;sne. Tzeirr:te\;\;ly Cr%atfv\(lj prrllatshe atsvvar:r%%ﬁe integral method, enthalpy formulation, variational formula-
0 the original phase forming a erface betwee e wo on, formulation with moving heat sources, and the discretization

gions. The interface remains at the melting temperature but

d

locati d velocity of i e L thods, such as finite difference and finite element methods. In
ocation and velocity of propagation aré not known a priori, anfyqiq perturbation techniques have also been used. Surveys of
are a part of the solution of the problem. The transient mterfatfﬁese methods have been published in a number of hiienk

location is a function of the physical properties of the two phas Rubinstein[5], Ockendon and Hogkin§6], and Wilson
as well as the temperature gradients at the interface and the la gFomon and éoggs[?]) and survey artiéles(Fukusak(;

heat of fusion. The diffusion equations in the two domains A%hd Seki[8]).
coupled through the interface temperature, interface location, andyeinhaum and Jii[9] applied the singular perturbation theory
the interface heat fluxes. The moving nature of the interface the problem in a finite slab, where the medium initially is not
the coupling of the energy equations through the interface re

. . . [ the melting temperature. The location of the interface was
tions render the mathematical formulation of the problem coms,,nq and the results. however. are valid for small Stefan num-

plex. The location of the i_nterface forms a part of the squt@oBers_ Charach and Zoglifil0] used the heat balance integral
to the problem, and the interface energy balance in tum iSpgathod and time-dependent perturbation theory to solve the same
differential equation for the interface location. Therefore, thgropiem. They found the interface location and temperature dis-
formulation is comprised of two second-order partial differyiytions for small liquid and solid Stefan numbers. Small Stefan
ential equations for the energy equations, and a first-order diff¢fympers correspond to small temperature differences, and large
ential equation for the interface equation, for constant physicglnperature differences require higher-order perturbation expan-
properties. ) ] ) sions, which are complicated. This limits the utilization of pertur-

The complex nature of the governing equations restricts th@tion techniques to small temperature differences. Ndif at-
general analytical solution of the problem to a limited number @gmpted an integral equation formulation of the problem with a
specific cases. Neumann's soluti@arslaw and Jaegét]) to the |imited set of boundary conditions. Rizwan-uddit?] solved a
melting-freezing problem in a semi-infinite medium is the oldeg§ne-dimensional phase-change problem subject to periodic bound-
solution to a phase-change moving boundary problem. This profy conditions. A semi-analytical numerical scheme was used in a
lem considers the diffusion into a medium, which is |n|t|a”y at %ne_domain prob|em_ Results were reported for a number Of d|f_
constant temperature, different than the melting temperature, g8fent frequencies of boundary temperatures and Stefan numbers.
the boundary temperature is suddenly altered by a const@iirsunkaya and Nalr13] solved the solidification of a two-phase
amount, which is higher or lower than the melting temperaturgroblem, where a Fourier series expansion was used to represent
Neumann's solution has been extended to problems with constgf spatial temperature distribution. The resulting infinite system
temperature boundary condition in cylindrical and spherical coosf ordinary differential equations is solved iteratively for the in-
dinate systems. In these solutions the initial phase is at a unifotgiface location and the temperature distributions. One advantage
temperature at the time the boundary condition is changed. Othglihis method is that the interface location can be computed with-
analytical solutions of moving boundary problems in semi-infinitgyt the detailed information about the temperature distribution.
domains with arbitrary initial and boundary conditions have beeris approach will be used in the current study.
found by Tad2,3]. So far general analytical solutions of the prob-
lem for finite geometries have not been published in the literature.

Various approximate analytical and numerical techniques have

- Formulation
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . . .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- The problem involves the formulation and solution of one-
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fixn LN where A= a,/ay, is the ratio of the thermal diffusivities. The
energy Eqs(6a) and (6b) are subject to the following boundary
and interface conditions:

sty —» 7=0: 0(0)=0, 6,(£0)=V,
36
. o, &=0: 64(0,7)=0; ¢=1: 8—§(1,7)=0 (7
” ox
é=a. 04(o,t)=065(0,7)=0.
LO,n=U®
The heat balance at the interface, using dimensionless quantities,
< ! » becomes
X 97 _ il gt '991) AS2 ®
| a7 S g | RS
Solid L1qu1d f é
/—\ where, St=C,(T,,—Ug)/L is the solid and S&=C,(V—T,)/L
\_/ is the liquid Stefan number, wit8 representing the heat capacity.
The solution methodology is based on fitting an infinite series of
Fig. 1 Solidification domain and temperatures functions for the temperature distributions. Specifically,
0(E7)= X Ban( D) dan(£,0(7),
T, T, " ©)
ay—=—=, 0<x<s(t), (1a) oc
IX ot
02(£,7)= 2, Boml ) bom( £,0(7)).
*T, 4T, m=1
@z X2 T s(t)<x<I, (1b) Here thep-functions reflect the temporal variation, whereas the

) ) o ¢-functions are related to the spatial variation of the temperatures.
whereT is the temperaturey is the thermal diffusivity;s is the  Note that thep's also account for a temporal effect due to the fact
interface location, antlis the length of the slab. The subscripts khat they are functions of the interface location. In this study the
and 2 denote the newly formed solid, and the original liquigs are unknown functions ang's are harmonic functions that

phases, respectively. The boundaries of the medium are subjec§4@sfy the boundary and interface conditions, specifically,
the following initial and boundary conditions.

t=0: s(0)=0, T,(x,0)=V @ ¢>1m=sin( mwg i—o

mar —) ., m=m-1/2.
1-o
(10)

This choice of functions form orthogonal sequences #¢8 o,

whereU, is the minimum temperature encountered at the boun@Pd ino=<£&<1, respectively, that satisfy the boundary conditions.
ary. At the phase-change interface the temperature is equal to figg different type of boundary conditions, orthogonal functions

, $am=sin

oT
x=0: TOt)=U(t)=Uy; x=lI: ﬁ(l,t):o,

fusion temperatureT that satisfy the boundary conditions must be used. Although any
orthogonal series could be used in the analysis, using harmonic
Ti(sO)=Ta(s,1)=Tpy, (3)  functions in the Cartesian geometry has the advantage of being

and a heat balance at the interface between the conduction in §@sier to manipulate. With the above choice of the functions for

two phases and the liberation of heat due to phase change gi&§ temperature variation, the substitution of E@s.and(10) in
energy Egs(6a) and (6b) gives two first-order ordinary differen-

aT, Ty ds tial equations for the unknown functiorgs. Because of the fact
o K TPl g (4)  that the differential equation is first order, the nature of the solu-

. L ) ) tion for the B functions is exponential. Specifically for the first
wherek is the thermal conductivityp is the density, andl is the jieration

latent heat of fusion. The following dimensionless quantities are

introduced: 0 2(—1)™ T< pu L md¢) \/_
E=xll, o=sll, T=ayt/l?, Vo=(V—T)/(Tm—Up) Bin= mmo Jo wa’ (=) dr | V7
T;-U() Tp—U() x M2
OXO= 37—, 5 ©) Xexr{—f, -7 |d7, (11a)
T,—T To—U(b)
ho(x,)= ", Y= ———. 2 1 T APl
V-Tn Tn=Uo Bl = — =\ ——exd - _dr | XDy,
V, and (t) are the dimensionless initial and boundary tempera- mm V1o 0(1-0)
tures, respectively. Substitution in the energy equations gives (11b)
20, 96, ¢ do £\ dy where the constant® ,, are such that the initial temperature dis-
R N Nl _( — _)_‘ (6a) tribution in the liquid phase is satisfied, and the superscript de-
g2 d1 g2 dr o) dr notes iteration. After the second iteration 6,
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The disadvantage lies in the fact that the convergence of t o] SRERERN N RS ES S S S R
series is slow. Nevertheless, it was observed that the slow conv 0 1 2 3 4 5 6
gence of the harmonic functions does not create a problem in tl... Dimensionless time

case. The interface energy balance given in &j.written in
terms of ¢'s and B's becomes

d Pr) T
d—‘:—Stl(—T+§E m(—1)"8¢)

m=1

Fig. 2 Time for complete solidification in a finite slab

CASE— S mp@
AStZl—amzzl MBzm- needed to obtain five-digit accuracy in temperatures for small
(13) time. This, nevertheless, is only needed if temperature distribution
is to be plotted, since the interface location can be solved inde-
(fendent of the actual computation of temperature profiles, as ex-
ained above. In this study 250 terms were used in the summa-
ns. The comparison of the predictions of the current approach
ith the data available in the literature is given[it3] and the
reement was found to be good.
The effect of the boundary temperature variation, solid, and
U(t)=To+Esin(wt)=Uq+E(1+sin(wt)), (14) liquid Stefan numbers on solidification were investigated. In the
. ) ) _first case to be reported the boundary temperature has a constant
vlhereg) denotes the frequency. When nondimensionalized usingy e Figure 2 shows the solidification time for a range of solid
w=ol/a;, Eq.(14) gives Stefan numbers for this case. In this fig@edenotes the ratio of
—1_ i _ _ Stefan numbers, $tSt;. Increasing the solid Stefan number re-
pn=1-y(+siner), y=E/(Tn=Uo) (15) sults in a fast movement of the interface and the solidification
wherey is the amplitude of boundary temperature variation.  time decreases. The liquid Stefan number has an opposite effect
Although the dimensionless temperatures defined in(@care  and an increase in the liquid Stefan number increases the total
better suited for formulation and the solution of the governingme for solidification. The interface motion is only slightly af-
differential equations, they are not convenient for plotting. Fdected by the liquid Stefan number, if the latter is small. In such a
this purpose the dimensionless temperatuggé,7)=(T; case the temperature in the liquid phase drops to the constant
—Up)/(Tm—Uy) is introduced, which, when used in the twomelting temperature, after which the advance of the solidification
phases renders the dimensionless interface temperature unityfrémt is similar to a single-phase problem. For small solid Stefan
terms of the dimensionless quantities used in the formulation, numbers, a change in the Stefan number ratio does not have a
pronounced effect on time for complete solidification. For large

Having computed thg functions, this equation can be integrate
to find the new interface locatiom(7). Further details of the ana-
lytical and numerical approach are similar to Dursunkaya a
Nair [13].

In the current problem the boundary is subjected to a sinusoi
variation of temperature in the form,

(&) =0,(E 1)+ ()| =—1|+1, O<é<o, (16a) Solid Stefan numbers, however, the solidification time increases
o many folds by increasing Stefan number ratio, i.e., for increasing
©(é,1)=Vo0,(§,7)+1, o<é<l (160) liquid Stefan numbers.

The effect of a sinusoidally varying boundary temperature was
investigated for a fluctuation frequenay,=20. Results for two
Results different fluctuating temperature amplitudeg, are reported. In

The sensitivity of the numerical results to the number of termene case the amplitude of temperature fluctuatiops0.25,
used in the summation of the harmonic series was tested. Rdrmich results in a boundary temperatg® variation between 0
small time, the interface heat balance is dominated by the fimtd 0.5. The other case is for a boundary temperature variation
term on the right-hand side of E(L3) that reflects the effect of amplitude of y=0.499, and the resulting boundary temperature
the boundary temperature. Therefore, for small time using a smedlriation is between 0 and 0.998. Note that throughout the text
number of terms for the summation of tdunctions(Eqgs.(12a) this case will be referred to ag=0.5 rather thany=0.499.
and (12b)) does not adversely affect the computations for the in- The motion of the interface for a solid Stefan number, St
terface location. For large time, due to the exponentially decayirg0.1 and boundary temperature amplitude variatign0.25 is
temporal nature of th@ functions, only the first few terms of the given in Fig. 3. In order to avoid crowding in the figure, the
series for the temperaturéggs. (9) and (12)) contribute to the boundary temperature variation is plotted only for the first few
interface equation, hence the interface location. On the other haogcles. The dimensionless interface location is plotted for two
the effect of the number of terms used in the summation hasdéferent Stefan number ratios. It can be seen that in this case the
pronounced effect on the temperatul&s. (9)), especially for liquid Stefan number has a small effect on the time for total so-
small time. In a typical run, approximately 10,000 terms arkdification. Due to fluctuating boundary temperature, the advance
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Fig. 3 Interface motion and boundary temperature variation Fig. 5 Interface motion and boundary temperature variation
for St;=0.1 and y=0.25 for St;=0.1 and y=0.5

uid phase. This results in a retrograde motion of the interface.
en the liquid Stefan number is smallésr exampleS, = 3) the
ackward motion is less important, and for even smaller Stefan
rHumber ratios this phenomenon does not exist. The only effect is
@..’élowing down of the forward advance of the interface. The ret-
V{;ggrade motion is observed only once, after which the effect is
uced to a slower advance of the solidification front. This effect
I((j\ven more prominent for larger values of the boundary tempera-
ure amplitude. The case wher=0.5 is given for a liquid Stefan
number, St=0.1 in Fig. 5. The boundary temperature variation is
ain plotted only for small time to avoid crowding. When the
id Stefan number is largeS{=3), the retrograde motion per-
iSt
¥

of the solidification front accelerates and decelerates in time. T
effect is more pronounced during the initial phases of the probl
when the solid-liquid interface is closer to the boundary. As t
solidification interface advances deeper into the liquid mediu
the oscillations of the interface advance are damped due to
increased delaying effect of a thicker solid layer. Figure 4 sho
the same phenomenon for a higher solid Stefan number, nam
St;=1. In this case, the interface advances faster and as the r
of the Stefan numberss, increases—i.e., for large liquid Stefan
numbers—the interface moves slower. When the cas§, fe# is

analyzed, for small time there is little lag between the interfa
motion and the boundary temperature variation. As the bound
temperature increases, the speed of the interface advance
creases andice versa For large time, this effect is damped. In
addition, the acceleration and deceleration of the interface moti

s for numerous cycles and it is observed even for smaller lig-

Stefan numbers =1 andS;=0.5). An expanded view of
%&; same case for small time is given in Fig. 6. This figure shows

is large, and for large liquid Stefan numbers the interface starts Lin the case whe§, =3 the interface motion slows down and

retreat towards the solid domain. It can be observed that forlsaarreste_d aroung=0.03, wh_en the boundary temperature is Sti”.
Stefan number rati6, =4 after a full cycle of boundary tempera_substantlally lower than the interface temperature. Due to the thin
T

ture variation, the interface moves backwards towards the bour} lid Iayert,_ the Ctiempt)ertitu:e n tr_e s_gllgtafssumest? Ilnke]artshape._,;\t
ary. In this case the liquid Stefan number is high and the interfaf{s Same lime due to the farge liquid Stetan number, heat capacity

: . — he liquid phase is also large, and the interface heat balance is
heat balance is dominated by the large temperature gradient in oéminated by the liquid phase, resulting in the backward motion
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Fig. 4 Interface motion and boundary temperature variation Fig. 6 Interface motion and boundary temperature variation
for St;=1 and y=0.25 for St;=0.1 and y=0.5 for small time
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of the solidification front, i.e., melting rather than solidification.

The forward motion resumes after the boundary temperature

reaches its minimum value at the interface. After this pagint

~0.075 due to an increasing temperature difference between thgynclusion

boundary and the interface, and a thin solid layer, the temperature ] o o )

gradient in the solid phase gets large, resulting in a faster advancd? this study the solidification of a finite medium was analyzed
of the solidification front. It should be noted that even for the casé$ing a semi analytical approach. The results showed that if the
when the liquid is initially at the melting temperatur®, € 0) the Ir‘“t:!?l terfnperature ?f tfhehmgedlurfn is different than me!t'r?gl a pos-
forward motion is almost halted. sibility of a reversal of the interface motion exists. With increas-

In most practical applications solid and liquid Stefan numbef89ly large differences between the initial medium temperature
are small. It is, nevertheless, instructive to see the effect of lar§ed the phase-change temperature, the retrograde motion is more
Stefan numbers on solidification for the problem in question. Figyominent, with a longer duration and persists for more cycles. It
ure 7 shows the interface motion for a solid Stefan number, ¥as also observed that with increasing solid Stefan numbers the
=0.5. The general features of the interface motion are similar ieterface _advance is faster e_md with increasing liquid Stefan num-
the previous case, the retrograde motion, however, even occursgfs the interface advance is slower.
smaller values of Stefan number ratios. The forward motion is
arrested for a longer duration even when the liquid Stefan number
is zero.

Figure 8 shows the transient temperatu(Es. (16)) for the
case when $t=0.5, S4=0.5, and y=0.5. Whenr=0.065, the
Ime.rface |s.|n the first retrograde mOtIOf} as .glven I.n F.Ig' 8. The[Z] Tao, L. N., 1978, “The Stefan Problem With Arbitrary Initial and Boundary
solid layer is thin; the temperature gradient in the liquid layer is" " conditions,” Q. Appl. Math. 36, pp. 223-233.
small. On the other hand, although the effect of boundary tem{3] Tao, L. N., 1981, “The Exact Solutions of Some Stefan Problems With Pre-
perature has penetrated well into the liquid phase, there is a large scribed Heat Flux,” ASME J. Appl. Mech48, pp. 732-736. o
temperature gradient on the liquid side of the interface. As time*! Crank, 2. oaarree and Moving Boundary Problem@xford University
advances, heat is removed from the liquid phase and whn5 [5] Rubinstein, L. 1., 1971The Stefan ProblepAmerican Mathematical Society,
the temperature difference between the insulated boundary and the Providence, RIEnglish translation A A
interface drops to a fraction of its original value. This corresponds®] Sckfr;clion, J'de"f?nq H(O:EIJk'ﬂSaW- lf-, 197g<>fvlndg SOKundafy Problems in

H H H eal ow an IfusionClarendon Press, Oxiord, .
to the end of the Seconq retmgrade motlon_ano_l the beanmg o[f7] Wilson, D. G., Solomon, A. D., and Boggs, P. T., 19R8oving Boundary
the new advan_ce of the interface as showr_l in Fig. 8. One can see’ proplems Academic Press, San Diego, CA.
that the magnitude of the backward motion is smaller and its[8] Fukusako, S., and Seki, N., 1987, “Fundamental Aspects of Analytical and
duration is dispersed over longer time interval. For large time NUTgi%}l Metfhsds on FlreF?Z.iggManﬂ M.eltingngat-tT?nsfeTr EroclJLem?:”

— i H nual Review o umerical ul echanics an eat lransieiC. awla,
(7—1.5) the temperature qf liquid phase has glready reached the ed., Hemisphere, Washington, DT, pp. 351-402.
interface value. At this point a retrograde motion is N0 more PoS-g) weinbaum, S., and Jiji, L. M., 1977, “Singular Perturbation Theory for Melt-
sible, since the heat flux term that results in a backward motion of ing and Freezing in Finite Domains Initially not at the Fusion Temperature,”
the interface vanishes. Comparing this with the interface advance ASME J. Appl. Mech.A4, pp. 25-30. = o B
of the same problem given in Fig. 8, it can be seen that the inteft% ﬁ:;?gglgbh;’ Iﬁ?dJZageI;,'\/Fl’ésgggnggdgga;gglljzazgénlte, Initially Over-
face motion, indeed, is not halted; only the speed of the advangeyj nair, S., 1994, “Numerical Solution of Moving Boundary Problems Using
slows down. Whenr=2.278, prior to complete solidification, the Integral Equations,” ASME AMD 182Jransport Phenomena in Solidification
boundary temperature reaches the interface value, and the temz-] QSME, Ng\é\l_ YO{glggMig-lf%_pp- 199—}1PBH h With Periodic Bound

H H e H H IZwan-uddin, s ne-bDimensional ase ange Wi eriodic bouna-
perature I.n the solid phase has_ a I_oca_l mln.lmum n the middle c;]& ary Conditions,” Numer. Heat Transfer, Part 85, pp. 361-372.
.the domain. The tempe.rat.ure. distribution giverra®2.5 is at the [13] Dursunkaya, Z., and Nair, S., 1990, “A Moving Boundary Problem in a Finite
instant of complete solidification. Domain,” ASME J. Appl. Mech. 57, pp. 50-56.
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The Influence of Initial Elastic
Surface Stresses on Instrumented
A. E. Giannakopoulos’ Shal‘p |ndentat|0n

Department of Materials Science and

Engineering, The present work examines the influence of pre-existing, elastic surface stresses on in-

Massachusetts Institute of Technology, strumented sharp indentation. The surface is modeled as a homogeneous and isotropic
Cambridge, MA 02139 elastoplastic solid in the context of linear elasticity and Mises plasticity with isotropic
Mem. ASME strain hardening and associative flow rule. Prior to indentation, a homogeneous, biaxial,

elastic stress state may exist in the substrate. The influence of the initial elastic surface
stresses on the force-depth response of instrumented sharp indentation tests, such
as Vickers and Berkovich, was analyzed. The unique connection of the indentation load-
ing response and the average initial stress is based on a relation of the stresses
right under the indenter, which holds universally for nearly incompressible
materials.[DOI: 10.1115/1.1485756

1 Introduction duced plastic deformation is assumed to be isoch@r@mmpress-

ible) and the plastic strains to be much higher than the elastic

The effect of surface residual stresses is important in many . _ . L
applications of scientific and technological interest. Regarding i%i’ralns(thls is usually the case for Vickers or Berkovich indenta-

strumented indentation, surface residual stresses may affect CB?{-] of soft metals with moderate strain hardeningnormal load
siderably the interpretation of indentation response with regard toproduces an indent of aréaand penetration depth

inferring the material properties of the indented substrate. Of par-The indented surface may have been subjected to prior me-

ticular concern is the micro and nano-indentation analysis of fil i?;cl"ﬂt z;gdé(f)rr ég%rlzg?ls:?;sdslgg. 'I:Q’hugrgfg:g)rvxl/(i)t?\gll?tgl ors?ss Lc‘#s g;} ;_
which have initial stresses due to thermal, mechanical, or Othaﬁ a Cartesian coordinate s s.tdﬁ) X z)’ is chosen so tr?at
processing treatment. Recently, Suresh and Giannakopéiijos Y Y ' X Y,

L e x andy-axes are the principal directions of the surface initial
proposed a general methodology for the determination of equal- . .
biaxial surface residual stresses using instrumented sharp inde [esses, with the origin attached at the center of the contact area,

tion. However, surface initial stresses are not always equil z is the axis which is positive insRide the substrate. The prin-

biaxial. Complex thermal and/or mechanical loading oftefiPal stresses at t_he surface 3@0 9y.0 ?'0“9 thex andy com-

produce residual stresses that are unequal. It is the purpose of Bgents of coordinate Syséem' respectively, as shown in Fig. 1.

short paper to examine the general case of the influence of surfa&€ surface stressesrio,oyvo) are assumed to be homogeneous

initial stresses on instrumented sharp indentation. In the followindependent of the, y, z coordinatel or approximately uniform

ing, the general analytic approach is presented first, followed BY & distance of 3wA in all directions from the center of the

experimental validation from available experiments in the ope¥Pntact area. The biaxial elastic residual strains are derived from a

literature and from experiments conducted in this work. Thétate of plane stress

analysis is based on a fundamental relation of contact mechanics R_, R __ R R_, R __R

which relates the components of the stress tensor directly under €x0= (T VoY /B, €0=(0y = voyE, (1)

the contact area of an indentation by a sharp indenter. The finghereE andv are, respectively, the Young's modulus and Poisson

outcome of the analysis shows how the surface initial stressesio of the substrate. Since the residual stress field is elastic, the

influence the force-depth response of instrumented sharp indengits of o}, and ¥y, are determined by the critical Mises yield

tion tests where load and penetration depth are recorded simuftgndition '

neously. ) R R R R
0'y<(0'><,0)2+(O'y,o)z_(o'x,o)((fy,o)q 2)

2 Assumptions and Approach whereao, is the yield strength of the substrate.

Consider frictionless, quasi-static sharp indentation of an elas-In the absence of initial stresses, contact mechanics analysis of
toplastic substrate by an elastic indenter which is much hardesarly incompressible linear elastic behavj@]) and axisymmet-
than the substrate. The substrate is assumed homogeneousringlip-line theory of rigid-perfectly plastic respong&]) gives a
isotropic? Around the contact area, the indented substrate plasiélation among the stresses just under the contact are@)
fies and undergoes isotropic strain hardening. The indentation in-

Oxxt oyy=20,;. ?3)

Currently at the Department of Civil Engineering, University of ThessaIyNOte thatazz in Eq. (3) is the normal contact stress distribution.
38336 \olos, Greece.

Contributed by the Applied Mechanics Division offf AMERICAN SocieTy oF  1h€ shear stresses at the surface are zero, due to the frictionless
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLIEDME-  type of contact. Equationi3) is true for normal contact of any
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februar;punch Shape with a near|y incompressib|e linear elastic material
26, 2001; final revision, February 19, 2002. Associate Editor: H. Gao. Discussion ; ; : ;
the paper should be addressedyto the Editor, Prof. Robert M. McMeeking, Depagr?ld IS apprommately true for ViCkers’ Berkovich, and cone |n(_:ie_r!-
ment of Mechanical and Environmental Engineering University of California—Sant&tlon of elastoplastlc substrates in the absence of surface initial
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aéresses. Finite element analysis of axisymmetric cone indentation
final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN-  of e|astop|astic materials, performed by the present author, con-

ICS. ! PN . L
2Under certain symmetry conditions of the material and the contact area, tlgm Eq. (3) within 5% and the results deviate Slgnlflcantly for low

isotropy assumption may be relaxed and the substrate may be considered ti &isson .I’atiO,V<0..33, high .yield. strengthay/E>0.005, _and
orthotropic. high strain hardening. EquatiaB) is based on the nearly isoch-

638 / Vol. 70, SEPTEMBER 2003 Copyright © 2003 by ASME Transactions of the ASME



of the surface initial stresses to the force-depth indentation re-
P sponse is due only to the equal-biaxial part of the initial stresses,
R, given by Eq.(4).

A key aspect in the present analysis is the invariance of the
hardness when initial elastic stresses are present. This invariance
can be proven in the context of linear elasticity since the residual

/031}0 stresses do not contribute to the indentation deformation work.
’ However, this is not the case for large deformation elasticity. Dha-
liwal and Singh[4] obtained an analytic solution for the axisym-

tff—
h —. Metric conical indentation of a prestressed neo-HooKeaom-
—— v/ pressible half-space and their results indicate that the average
y iZ St contact pressuréhardnesgis a function of the amount of pre-
D =

strain. Nevertheless, if the residual stres8, is sufficiently small
compared to the elastic modulus,

65,0 R
Gx,O R
. 30RE<1, )
Gy, 0

then the large deformation analysis also predicts invariant average
contact pressure. Regarding elastic-plastic material behavior,
Bolshakov et al[5] used finite elements to simulate cone inden-
Fig. 1 Schematic of sharp indentation with the associated tation of an aluminum alloy and found that equal-biaxial initial
nomenclature stress leaves the average contact pressure invariant. The negligible
effect of pre-existing stress on hardness was shown numerically
by Mesarovic and Fleck6] for spherical indentation of elastic-
plastic solids, provided that the loading is high enough for plastic
oric deformation under the contact region and is important feftrains to dominate over the whole contact area. For the cone and

solving the problem of the influence of initial stresses in the shagyramid indentation, a low bound condition for the elastic strains
indentation respongghe P — h loading curve of many metals and to dominate over the plastic strains is

metal alloys.

To conti);lue the analysis, the surface initial stresses are decom- E/tana<2.3loy(1- v3)I(1-2v), (8)
posed into an equal-biaxial part and a pure plane shear part, Ridere o= 7/2— vy, with 2y being the included angle of the in-
2. The magnitude of the equal-biaxial component is denter tip (=22 deg for Vickers tetragonal pyramid indenter,
24.7 deg for the Berkovich trigonal pyramid indenter, and 19.7

oR= (ot "yRyo)/2 4) deg for the equivalent circular conical indent&Combination of
and the magnitude of the shear component is (7) and(8) gives an interesting constrain for the maximum initial
R R R tension that preserves hardness
T =|0'X'0* O'yy0| 2. (5)

o oy <0.77 tana(1-v%)/(1-2v). 9)
The shear component;’, does not affect the macroscopic inden- - B R .
tation response, because it does not affect the contact stress 'c:i _example, for=22 deg and=0.3, o~ <0.640, representing

tribution. This can be shown by recasting the shear initial stre ow bound limit for_the magnitude of th_e res_ldual stresses.
A general explanation of the hardness invariance can be derived

into a biaxial initial stressing of equal but opposite in sign com- ; . L -
ponents. It can then be immediately seen that after superposﬁh%ﬁ ob;ervmg that in the.prlnc[pallstres.s space the origin for' 'ghe
stressing of each material point is shifted either to the positive

of the initial stresses to the indentation induced stregseg, in ) . .
the absence of residual stresselq. (3) is preserved without duarter or to the negative quarter depending to the sigraind

changing ther,, stress componerthe contact stress distributipn that the stress increments due to the compressive nature of inden-

[yt (‘750_ 0'5’0)/2] +[oyyt (050— 0'50)/2] =20,,. (6) 3Proof of Eq.(8) can be given using the stress state at the contact perimeter of a

. — cone indentation([2]), o= —0y,y=(1-2v)E/[4(1-»?)tana] and all other
Equation(6) proves that the plane shear initial stress leaves thgesses are zero. Therefore, the Mises stress at the contact perimegr3is so
contact stress distribution invariant. Therefore, the only influeneesticity prevails ifo,3 <o, and therefore Eq(8) holds true.

Gx’RO<— Fi— e s S pont—
< By Koty X
- , o= L . -
T A T
%0

Fig. 2 Decomposition of the surface initial stresses to an equal-biaxial part of magnitude
of=(of +0of )2 and a shear part of magnitude  7°=|o};— o7 /2
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Fig. 3 The change of the loading part of the indentation R R . .
P—h curve due to the presence of surface initial stresses AP/R==0% (pyy+ %) tensile residual stress
AP/B =~ oRsin o/ (p,, + 6Fsin o) compressive residual stress

o = 22° Vickers, 24.5 ° Berkovich indenter

tation are always pointing to the negative direction. It is then clear ) i
that the material points at the surface will yield and deform pla Jg'n‘lomgfzézl?rt:i\:; |02t?23§ of '0;’3/"' IACF;L/nPOa'ri:osnaaIu:s::tgnﬁf
tically much easier under initial compression, whereas the oppQ- : o Pav: P

S o . . : indentation depth.
site is true under initial tension. This implies that the contact area
will tend to be larger under initial compression and smaller under
initial tension. For classic elastoplastic behavior, the yield surface

in the principal stress space is an inclined cylinder with the sym-

Ry -1
metry line the line of equal principal stresses. Since the out-of- ﬁ:(1+ g ) . oR>0, (13)
plane initial stress is zero and the contact stresses are negative Ag av
(compressivg negative stress increments due to contact will pro- A R 1
. T ot sina
duce higher contact stresses for compressive initial stresses and _g(1+ ) . oR<O. (14)
lower contact stresses for tensile initial stresses. Therefore, since Ao av

both load and contact area vary in the same way, similarity re- the comparison between thef=0 and theaR#0 cases is
quires that the hardness is invariant with respect to the initiﬁ{ade at constant applied load, then
stresses. This result will not be valid, if yielding is pressure sen- '

sitive. h* ( L O'R) ot - (15)
el e 7T

3 Effect on the Loading Part of the Force-Depth h2 oRsina| 1

Response ?~( - ) ;  oR<o. (16)
0 av

Denote byP, and A, the load and reafvertically projected
contact area corresponding to the sharp indentation in the abs . .
of equal-biaxial componenz®=0, and byP and A the corre- _Precasted as relative change of the applied foxB=P
sponding quantities wheaR+0. From the invariance of the av- 0
ﬁrage c)(;ntact pressufand, equivalently, the invariance of the AP/Py=—0®/(pa+0®); o">0 a7

ardnes

exl\@éen comparing at constant indentation depth, Etf®, (14) can
e

AP/Py=~—caRsinal(p,,+ ot sina); o"<0. (18)

=P/A=Py/A,. 10
) Pav 0770 (10) On the other hand, in case of comparison at constant load, Egs.
If the only length in the problem comes from the depth of pen45), (16) can be recasted as a relative change of the penetration
etration, Kick’s law holds regarding the load-depth relation depth of the indentetkh=h—hy,

P=Ch?, Py=Cyh2. (11) 172
. R Ah/h0=( Po ] —1; "0 (19)

In Eqg. (11), C signifies the indentation compliance and the sub- Pay— 0
script 0 refers to therR=0 case. Sinking-in and pile-up at the 12
indenter contact perimeter are included in the relations of the pro- Ah/hf(# —-1: oR<o. (20)
jected contact areas Pay —0 SN

A=Dh?, Ay,=Dgh? (12) Equations(17) and(18) are plotted in Fig. 4 and Eq§19) and

’ ' (20) are plotted in Fig. 5. It can be seen that the highest change in

for oR+0 andoR=0, respectively. the load-depth response appears when the comparison is made at

The influence of the initial stresses to the loading part of theonstant indentation depth, Fig. 4. It is therefore recommended
load-depth response depends on the sign-df(positive when that for experimental deduction of the initial stresses fromRhe
tensile and negative when compresgjssee Fig. 3. The compari- —h loading response, the constant depth comparison be used, i.e.,
son of the load-depth response of indentation of a substrate wihs.(17) and(18) and Fig. 4, because it maximizes resolution. An
and without initial stresses can be made either at constant appl@ious additional limit for the present analysis can be shown
load or at constant penetration deg#iee[1] for detaily. A ther-  from Egs.(14) and(15)

modynamic explanation of Fig. 3 is given in the Appendix. 0< oR< 21
If the comparison between thef=0 andoR+0 cases is made o =Pay (21)
at constant penetration depth, then when comparison is made at constant applied load and
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" GR/Pav Fig. 6 The change of the unloading part of the indentation P
A= [ Py — 0] =1 tensile residual stress —h curve due to the presence of surface initial stresses
Ah/hy=1p,/ (p,,— o sin)]"*~1  compressive residual stress
o = 22° Vickers, 24.5 ° Berkovich indenter
5 Comparison of Predictions With Experiments
Fig. 5 The relative change of penetration depth, |Ah|/hg, as a

function of the normalized initial stress, ofIp,,. Comparison E_arly eXpe”m_emS of Fink arjd _Van Ho_{@] Invgstlgated ex-
at constant applied load. perimentally the influence of uniaxial tensile bending stress on the
Rockwell E hardness of the 17S aluminum alloy. They found that
for U'R/O'y<0.5, the hardness decreased less than 2% from the
hardness of the unstressed material. Later, Sines and Catl8pn
22) investigated experimentally the influence of uniaxial bending
stress on the Rockwell B hardness of an annealed high-carbon
when comparison is made at constant penetration depth. steel (the surface stresses were below the elastic Jinfihey
Figures 4 and 5 can be used to assess the experimental errdioahd that for compressive initial stress, the hardness increased
the residual stresses provided that the accuracy of either the ldesk than 1% and for tensile initial stress the hardness decreased
or depth measurements is known. less than 5% from the hardness of the unstressed material.
More recently, Simes et aJ11] examined experimentally the
influence of uniform, tensile biaxial stress on the Vickers hardness
4 Effect on the Unloading Part of the Force-Depth Re- ofR an annealed bright drawn mild steel. They found that for
sponse 0"/0,<0.4, the hardness dec_reased Iesthhan 3% from the hard-
ness of the unstressed material and ford™/ o,>0.4 the hard-
Denote byE* the indentation modulus which includes the elasaess decreased dramatically. This result is similar to that found by

0<-—oRsina<p,,,

tic deformation of the indenter, Fink and vanHorn for the uniaxial tensile residual stress and can
1-2 1-p2\ 1 be explained by the constraint given by K@) (for the Vickers
E* = (_V " i) (23) geometry tam=0.4).
E Ei, ' In order to further validate the theory, available experimental

éesults were found in the work of Tsui et §1.2]. Tsui et al. give
dequate information regarding nanoindentation tests where trigo-
Berkovich diamond pyramids indented a rapidly solidified
9 aluminum alloythis is a very fine-grained alloy with a yield
strength ofo,=353 MP3g, at room temperature. Prior to indenta-

dP 1 \2 dP, 1 \? tion, the substrate was subjected to pure bending that produced an
A=(% W) v Ao dh CE*| (24)  initial uniaxial (elastio stress of different magnitudéensile as

! 0~ well as compressivyeA fixed grip attachment locked in a surface

where C,=1.142 for the Vickers and 1.167 for the Berkovichpjtig| stress,of,, due to bending. Therefore, taking thedirec-

indenter([7,8]. . : L2 R .
’ t the bend t direct =0, Eq.(4
Comparing the cases @ff=0 and oR+0 at fixed depth of ion as the bending moment direction witf =0, Eq.(4) gives

whereE;,, v;, are the Young’s modulus and Poisson ratio of th
sharp indenter anB, v are the corresponding elastic constants fd?
the substrate. The real contact areas at maximum load are releggh
to the initial unloading portion of th®—h curve

penetration, Eq(24) gives oR=0oRy2. (27)
A dP\?(dP,)| ? Figure 7 shows the experimental values of the apparent contact
Ao “lan dhy) (29) areas, at different values of initiélesidual stres&rso. From Tsui

) ) i et al.[12], the reported values of the mechanical constants are:
see Fig. 6. Comparing the cases @ff=0 ando"#0 at fixed E=82.1 GPa,y=0.31, 0y 426 MP4 for 8008 aluminum and
applied load, Eqs(24) and(10) give E;,= 1006 GPa;,=0.07 for the diamond indenter. According to

dP  dP, Giannakopoulos and Suregh3], at P,=110 mN, the average
= dn (26) pressure isp,,=1.3 GPa, the contact area A&=285um?, the
0 unloading slope islPy/dhy=0.89 mN/mm and the residual pen-
It can be concluded that when comparison is made at fix@fration depth ish, o/h =0.913. Tsui et al. reported average
applied load, the unloading part of tie—h curve cannot give pressurep,,=1.2 GPa, contact ared,=92um?, unloading
any information on the initial stress. The unloading part of thelope dPy/dhy=0.89 mN/mm, residual penetration depth
curve can be useful in the determination of the initial stresses,hf o/hpy,=0.913 and contact stiffnes§,=37 GPa. Figure 7
comparison is made at fixed indentation depth by combining Egs.
(25), (13), and(14). 400.09iS the uniaxial stress at 0.29 compressive strain.
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Fig. 7 Nanoindentation measurements of the apparent contact
area for uniaxially stressed specimen of aluminum alloy 8009,
after Tsui et al. [12]. The prediction of the present analysis is
shown by dark dots. The comparison of apparent areas is done
at constant load. The apparent contact area is a simple scale of
the maximum indentation load due to the elastic residual
stresses, ignoring the hardness invariance.

shows the experimental values of the apparent contact(eoea
parison of theP—h curves at constant logdtogether with the
predictions from the present analysis, E(ES) and (16) with «
=24.7deg andrR from Eq. (27). The agreement is very good.
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Fig. 8 Schematic of the experimental procedure used to exam-

ine the influence of the initial elastic shear stress in the instru-
mented indentation loading response. The applied twist ORis
locked in and produces an elastic shear stress R
=0.25E@RD/(L(1+v)) at the surface of the specimen.

to calculate the hardnesgaverage pressurevhich was found to
be 1.86 GPa, both for the unstressed and the stressed specimen.
This result proves the invariance pf, under initial shear stress.

6 Conclusions

A theoretical investigation of the influence of surface initial
stresses in the force-depth response of instrumented sharp inden-
tation was presented. The initial stresses are elastic, but not equal-
biaxial. The analysis investigated the conditions under which the
hardness remains independent of the initial stresses. Both analytic
and experimental results indicate that the loading part ofRhe
—h response contains only information about the average surface
initial stress, GF o+ ok)/2. It is then important to assess the in-
fluence of the initial stresses when the macroscopic indentation

A key result of the present analysis is that an initial shear stre@sponse is used to extract mechanical properties of the substrates.
will neither affect the hardness nor the loading force-depth rel&his may be particularly troublesome in the evaluation of thin film
tion. It is then important to experimentally validate this resuliproperties. The situation is no better even when the finite element
since such initial stress state has never been tested in connecfigtihod is used without including the initial stresses in the mod-
to instrumented indentation. To that end, instrumented microig!ing. If the material properties are known, the force-depth inden-
dentation tests were performed on a cylindrical specimen of Adtion response can be used to assess the average biaxial surface
7075-T6 which was prestressed under torsion. The material prapitial stress, but not each initial stress component separately.

erties of this aluminum alloy arE=70 GPa,»=0.3, shear yield

strength7, =240 MPa and hardnegs,, = 1.9 GPa. A locking de-

In the absence of any information about the initial stre¢ses,
their ratio, only the equal-biaxial and the uniaxial initial stress

vice was designed to apply to the specimen an elastic shear ste&)s be resolved conclusively by the force-depth response. Equal-
by locking in an appropriate twisting angle, as shown in Fig. &iaxial stresses are often present in thin films and uniaxial surface

The dimensions of the cylindrical specimen were lendth
=10.1cm and diameteD=1.27 cm. An applied twist of®R
=6 deg gave an initial elastic shear stre$s=177 MPa. The

residual stress often appears in metal line deposition on ceramic
wafers and in uniaxial bending or stretching of plates. In such
cases, indentation can be used with the present theory to assess the

specimen was polished with 0@m alumina paste and cleanedresidual stresses. The limits of the analysis must be also kept in
with acetone. A Vickers diamond indenter was used with a WilsdRind, especially regarding homogeneity and isotropy of the ma-
MicroRockwell indentation device provided by INSTRON. Thderial properties, uniformity of the initial stresses, low friction

test was load controlled with constant loading rate of 0.25 N/goefficient, and geometric sharpness of the indenter geometry.
The device was able to record simultaneously the normal load aM@derate deviations from the previous limits may lead to strong

the vertical displacement provided by a capacitance SMU-908gViations from the present results. The method can be applied
from Kaman Instrumentation Corporation. The resolution was 0¥¢hen the stress-free indentation response is measured or can be
N for the load and 0.Jum for the displacement. Four test wereconstructed from known material properties.

conducted in the unstressed and four tests in the twisted specimen

in ambient (25°C and 60% relative humidity In all tests the Acknowledgments
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um) for the stressed specimen. This result proves the invarianﬁ'f)pendix

of the P—h loading curve under initial shear stress. The imprints

were subsequently observed with the Olympus BH2-UMA optical Thermodynamic Proof of the Contact Pressure Invariance
microscope with magnification’310*. The contact area was usedThe force-depth response shown in Fig. 3 can be explained start-
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ing from the convexity of the internal energy relation with respeatontact pressure distribution must remain invariant in the presence
to entropy,S, and volumeV [14]. In thermodynamic terms, the of initial stresses. As a result, the average contact pressure remains
stability of equilibrium during indentation at constant temperaturalso invariant.

(T=const) requires the Le Chatelier-Braun inequality
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Computational Isotropic-
Workhardening Rate-Independent
Elastoplasticity

A novel formulation for elastoplasticity has been recently proposed by Liu and Hong.
These authors have explored the internal symmetry of the constitutive model for perfect
plasticity to ensure that the consistency condition is satisfied at each time step. Moreover,
for perfect plasticity, they have converted the usual nonlinear elastoplastic constitutive
model into a linear system of ordinary differential equations in redefined variables. The
present paper is concerned with general isotropic workhardening. With the present for-
mulation, it is still possible to satisfy the elastoplastic consistency condition at every time
step, without the need for iterations even for nonlinear workhardening. The resulting
system of ordinary differential equations, however, is, in general, nonlinear. Different

strategies for obtaining numerical solutions of these equations are proposed in this paper,
one of them based on group theory. Numerical solutions from the different schemes, for a
simple illustrative example, are presented in the pappOl: 10.1115/1.1607356

workhardening. The constitutive model is again written in the
form of a system of ODEs in suitably redefined variables. It is

subiect. Return mapping algorithms provide an effective inte Lrjégain possible to satisfy the consistency condition at every time
Ject. pping aig P 9 gtep, without the need for iterations even for nonlinear workhard-

tion scheme for the constitutive equations. This procedure carrlé'-ﬁng plasticity, but the system of ODEs is no longer linear in this

out a discrete enforcement of the consistency condition that w. g . S . .
; o . Thr ifferent str ies for ining numerical solution
to the best of the authors’ knowledge, first suggested by Wllkl%gse ee different strategies for obtaining numerical solutions

. B ? the system of equations are proposed herein. These are a direct
[1]. The consistency condlt_lon ensures that_ the _changlng Str%?%tegy one based on converting the system of ODEs into an
state always remains on tli;n general changing yield surface. !

Radial ret . laorith h b loved | equivalent nonlinear Volterra integral equation, and, finally, a so-
radial return mapping aigorithms have been employed In Cofig;q strategy based on group theory. Numerical solutions from
junction with the continuunfor elastoplastictangent by, among

) ; the different methods, for a simple illustrative example, are pre-
other_s, H'“tof‘ and Ow_e['IZ] and Pinsky et al[3]. These _ela_sto- sented next. A concluding remarFI)<s section completeg the pager.
plastic moduli are obtained from the continugrate constitutive
model by enforcing the above mentioned consistency condition.

Nagtegaal4] observed, in the context of a linear isotropic hard- o )

ening rule, that use of the continuum tangent results in the loss&f Constitutive Equations

guadratic convergence of the associated iterative method. In
seminal paper, Simo and TaylpB] proposed the consistent tan-

1 Introduction
Computational rate-independent elastoplasticity is a mat

%1 Separation of Strain Rates.

gent elastoplastic operator for rate-independent elastoplasticity. e=€e¥+ P (1)
This approach assures consistency between the integration algo-

rithm and the tangent modulus, thereby preserving the quadratic d=d®+d® (2
rate of convergence of iterative solution schemes based UpRRere

Newton’s method. The consistent tangent operd@fO) has o )

been routinely employed in the context of the finite element d=e=¢€—(1/3)tr(e)l 3)

method(FEM) for solving problems in elastoplasticity. It has als
been employed within the boundary element met(BEM) by
Mukherjee and his co-authoii$,7].

Liu and Hong[8-10Q] have recently revisited this problem and
have proposed a novel formulation for Tthey have explored the
internal symmetry of the constitutive model for perfect plasticity
to ensure that the consistency condition is satisfied at every time
step Moreover, for perfect plasticity, they are able to convert ¥here
physically nonlinear constitutive model into lmear system of
first order ordinary differential equatiof©DES of the formx
= Ax (with suitably defined variables,).

The present paper is concerned with small-strain small-rotation
rate-independent elastoplastic problems with general isotropic

%nd similarly ford® andd(®).
2.2 Elasticity.
d®=g(2G) “4)
tr(e®)=tr(o)/(3K)=p/K (5)

s=o— (13)tr(o)l. (6)
2.3 Plasticity.

dP=0 for o<k(eP) 7

3dP

Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF dP=""¢ for o= k(eP) (8)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 20
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 17,
2002; final revision, Apr. 24, 2003. Associate Editor: B. M. Moran. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of
Mechanical and Environmental Engineering University of California—Santa BarbaM/here
Santa Barbara, CA 93106-5070, and will be accepted until four months after final
publication of the paper itself in the ASMEOURNAL OF APPLIED MECHANICS.

tr(e”)=0 9)

o=+/(3/2)s:s (10)
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AP = P = \[(2/3)dP:d . (11) 4 Minkowski Space-Time

4.1 System of Differential Equations. Define them+1 di-
mensional vector:

For the case of plastic flow, use @f) and(8) in (2) gives

s+ — 2 s=2Gd. (12) SsedlT (24)

) . . where, for two-dimensional problems=4 and the tensos has
In Egs. (1) through(12), the tensore is the strain, with a su- components
perscript(e) or (p) denoting its elastic and plastic parts, respec-
tively. A superscribed dot over a variable denotes its derivative
with respect tapseudd time. The stress tensor i and the de-
viatoric parts of the stress and strain tensorssaa@d e, respec-
tively. The elastic material properties are the bulk modidusnd and, for three-dimensional problens=9 and the tensos has

X:[Xl,XZ, . ,Xm,J]T:J[Sl,Sz, .

1S3 (25)

S
[s]=L

4 S

the shear moduluss, while the plastic hardening function is components

(). Finally, for a second rank tensey a:a= aj;a; -

S; Ss Ss

sl=|Ss S Sail. 26

3 Integration of Eq. (12 - 89 52 34 -
8 7 3

3.1 Integrating Factor. Define the integrating factor:

t (Pdt
J=ex 3Gj
ok(€P)

Note that

&P delP)
=exX 3Gf —_—
0 K(E(m)

} . (13)

Of course, the tensaris symmetric, so thagz=s, in (25) and
similarly in (26).
The equations for plastic flow can now be written in the form

X=AX @7)

where, for the two-dimensional cagor example, the explicit

J=3GdP I/ k(™). (14) form of the matrixA is
Using the integrating factal from (13), Eq.(12) can be written 0 0 0 0 d,
o 0 0 0 0 d
%[J(t)s]= 2GJ(t)d. (15) A=2G| 0 0 0 0 ds (28)
0 0 0 0 d,

3.2 Examples of Hardening Functions.

Perfect Plasticity. In this case,x(e®)=Y, whereY is the

constant yield stress in tension. Now

3GeP)
J(e(p)) = ex;{

(16)

Linear Workhardening. In this casex(e®)=Y+CeP with

Y and C constant. Now

Nd; Ady Ads Ad, O

with A determined in the next subsection. Also, the components of
the tensod in (28) are written in the same manner as those iof
(25).

The first four equations of27) represent equations df5),
while the last one represent$4).

4.2 Determination of A in Eq. (28). Using (14), the last
equation in(27) can be written in explicit form as

(p)13G/C :
IeP)=| 1+ € 17) 2GIN(s:d)=J=3GId}/ k(). (29)
Finally, using(23) and(29),
3.3 Determination of s:d. Rearranging12): 3
Y
- (p) MeP)= ——rr| (30)
_ 25 — 3d0( S) (18) 2K2( E(p))
(26) 2(eP) where, as in Simo and Tayl§5]
Taking the inner product ofl8) with s, one has 3G
s's 3dgp)(SZS) Y= 3G+ k'’ (31)
sd=——=+ PTG (19)
2G - 2k(€P) Note that for perfect plasticity =3/(2Y?), and, for this case,
o |
First Term of (19). From (10) and(8), (27) is linear!
s (2/3) k2 20 4.3 Final Form of Differential Equations. With the
s.s=(23)«”. (20) Minkowski space-time formalism, the system of differential equa-
Differentiating (20) with respect to time, tion for elastoplasticity can be written as
ss=(2/3kk'dy . (21) x=AXx (32)
Second Term of (19).Using (20) where
3d(p)(S:S) X:J[S,l]T (33)
cF0 Y Kd(p) (22)
Ll
2k(€eP) Omxm d| .
A=2G if x'gx<0 (elastic state  (34)
Finally, using(19), (21), and(22), one gets O1xm O
de [ 23 a=2g| ™ 9 axmo (plastic state  (35)
s0={3g Tx)% - (23) “PINdT o @x=0 b
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|m><m Om><l
O1xm —(213)k?

with m=4 for two-dimensional andn=9 for three-dimensional  Integrating(47), one gets
problems. The space consisting of malendowed with the indefi-

nite metric tensog is called the Minkowski space-time. Z(t)=Z(ti)+J(ti)s(ti):[e(t)—e(ti)]+ZGJ't[e(t)
§

g:

. t
(36) Z(t>:{J<ti>s<ti>+ze f J(@d(&)dg}:dm (47)
5

5 Solution Strategies —e(2)]:d(2)J(2)de, (48)

5.1 Scheme One: A Direct Solution Strategy. Given the a nonlinear Volterra integral equation far
state at timd,,, i.e., oy, d,,, eﬁp) andJ,, and alsad,,,, at time The three parameters®, J, and Z are homeomorphic. For

th+1, One can write the matriA in (32) as example, for the linear workhardening material in Section 3.2, it
follows that
Om><m dn+1 ) T )
A,=2G if X,9,X,<0 (elastic statg CelP)\36/C
Oixm O Py =
J(eP)=|1+ )
(37)
Omxm  Gni1 T st 20 (3G+C)Y? CelP) (36+20)/C L
A,=2G \dl, 0 if X,0.X,=0 (plastic state (e'P)= 3(36+2C)G v -
Solving (32) with the Cayley transform, one has o Z2(J)= M[J("'G*zc)’(%)— 1]
’ 3(3G+2C)G '
Xn+1=Jn 1[Sh+1,2]7=GpXn=GpJn[$,,1]" (39) 3(3G+2C)GZ 3G/(3G+2C)
where J(Z):[W (49)
+
Gn=[1—7A,] I+ 7A,] (40) ( )
With the help of the following formula eP(J)= g[JC/(?’G)_l]’
| ab’ —a
I, alt | '™ T-ab I-ab ( v ([336+2c)Gz |¢e*%©
= (41) eP(2)== — —-1].
bT 1 —b" 1 C\| 3G+Oo)Y
1-ab 1-ab A numerical scheme based on the above formulation is derived
and the use oA, from (38), one gets next. The discretizations of Eq$48) and (44) are obtained by
" applying the trapezoidal rule for the integrals as follows:
872G2\ ., ,dl 47Gd
|+ T nntiTntd ot Zy1=Zyt IS (&1~ 6]+ GAL [y 1 —€,]:d,  (50)
o 1-472G?N\ 0y 1:0n 1 1—472G?Ndpp1:dnig 5 ;
" 476G\, d7 1447262\ Oy g0y | Si1=7 St GAt dyy it 3 dyl. (51)
n+1 n+1

2 . _ 22 .
1-47°G®\ U1 :0n s 1-47°G Ny +1:0n+1 The abovel, andJ,, ., can be calculated through the function

J=J(Z) as demonstrated, for example, by E49) for the linear
Herene Z", s, denotes the value afat a discrete timé, and workhardening material.
so on, andr is one half of the time increment, that is= At/2
=(th+1—th)/2.

Equation (39) gives J,., ands,.;. Next, 651'1)1 is obtained 5.3 Scheme Three: A Numerical Method Based on Group

Theory. The third method is derived as follows. Let

from J,, 1.
Finally, from (6), (5), (9), and(1), one has s
§= — 52
O 1=S 1+ Kt )l (43) N (52)
5.2 Scheme Two: A Numerical Scheme Based on a Nonlin- be the normalized stress deviator. Fr@h2), the governing equa-
ear Volterra Integral Equation. The solution of Eq(15) is tion for sis found to be
J(t) (0 3G+« 2G
=—9qt)+2G | —= 44 B K o
S(t) 30 s(t)) Gfti‘](t) d(yd¢ (44) S+ p dgp)s_ \/%Kd (53)
where one needs to specify the initial vak(g) at the initial time |, .. upon defining the integrating factor
t. ’
From (14), (23), and(44) it follows that P3G+ k() «J
~ L=ex f ——deP | = —— (54)
. 3Gy t 0 k() x(0)
J()=—-] I(t)s(t) +2G [ I(Hd(H)d{|:d(t).  (45)
K t; becomes
Furthermore, let d 2G
' <2 « a(L(t)s):—L(t)d. (55)
Z(t)= 355 0= =Jdf. (46) V2/3x
Y Y For example, for the linear workhardening material in Section
Therefore 3.2, one has
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Fig. 1 (a) Shearing stress as a function of shearing strain and
three proposed numerical schemes

CelP)| (3G+C)C
L(e®)={1+ ) (56)
Also, from (54), (23) and(52), one has
} 2G
L= T2 Ls.d. (57)
Equations(55) and(57) can be jointly written as
X=AX (58)
in which
X= LS (59)
L
is called the augmented deviatoric stress, and
A: 2G | Omxm d} (60)
23| dT 0
satisfying
ATg+gA=0 (61)
which is the Lie algebra c§Q,(m,1). Here
~ |m><m Om><l
6=lo, 1 (62)

is a constant metric of Minkowski spacetimdé™*®. Thus, the

one-parameter group generated;by;ives the following transfor-
mation formula forx:

X(t)=G(1)X(0) (63)

whereG is an element of the proper orthochronous Lorentz gro

SQO,(m,1) satisfying

G'9G=4 (64)
detG=1 (65)
G2>o0. (66)
From (59) and (62) it follows that
XTgX=(L)q &5 1] (67)
which, in view of (52), (7), and(8), leads to
XTgX=0. (68)
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(b)

(b) error in satisfying the consistency condition for the

The equatiorXTgX=0 is called the cone condition, which cor-
responds to the yield conditians=(2/3)x2. On the other hand,
XTgX <0 corresponds to the elastic state.

A numerical scheme based on the group properties can be uti-
lized to enhance computational accuracy and efficiency. The time-
centered Euler scheme for EG8) is

Ln+l§1+1 A [Lnén}
I-n+1 _Gn Ln (69)
where
Go=[1—7A.] I+ 7A,]. (70)

In the above, fron{60), one writes

A* 2G [Omxm dn+1} 1)
" 23k, dhsy O

It is very important to point out that thén in (70) fulfills the
group propertieg64)—(66) as discussed in Liji11]. It has the
following form:

127262dn+1d:1—+1 2\/€TG Knlny1
& = Kﬁ_67262dn+l:dn+l Kﬁ_67'262dn+1:dn+1
" 2\/€TGKndI+1 K2+ 672G2d,, 1 :dn g .

2 2m2 . 2 22 .
Kp—=67°G dy 110011 Kp—=67°G dy 111011

72)

6 A Numerical Example

In order to compare the merits of the different schemes, con-
sider a simple numerical example of a linear workhardening ma-
terial subjected to simple shearing deformation. In this problem,

YRe strain rate tensat is

[0 1 o0

Y

d= > 1 0 O (73)
0 0 O

wherey is the engineering shearing strain.

Figure 1 compares the results calculated by the three different
numerical schemes described in Sections 5.1, 5.2, and 5.3, respec-
tively. The material constants used in these calculationsGare
=20,000 MPa,Y=200 MPa, andC=100MPa. The time step
used in all three calculations $t=0.0001s. The three schemes
give the same shearing stress-strain curve within plotting accu-
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racy. This(bilinean curve is shown in Fig. (B). Their errors in [ Pinsky,l T‘- M., P_ister,fKélS-, alnd TayIO(rj, FEil. L., 1981, l“qumFL;Iatioré and Nu-

5 : H HH : . 2 merical ntegratlon [0} asop astic an astowscop astic Rate Constitutive
S ore 2hown In Fi. (). 1t an bo séen from this figure that all  EW421one” Repor No. UCBISESH-G105, Dearien of Gl Eninering
the schemes are very accurate, with the group-preserving schemg nagtegaal, J. C., 1982, “On the Implementation of Inelastic Constitutive
giving the smallest error in satisfying the consistency condition,  Equations With Special Reference to Large Deformation Problems,” Comput.
closely followed by the scheme based on the \olterra integral Methods Appl. Mech. Eng33, pp. 469-484.
equation. [5] Simo, J. C., and Taylor, R. L., 1985, “Consistent Tangent Operators for Rate-

Independent Elastoplasticity,” Comput. Methods Appl. Mech. EdA®, pp.
: 101-118.
7 Concludmg Remarks [6] Bonnet, M., and Mukherjee, S., 1996, “Implicit BEM Formulations for Usual
This paper presents a new formulation for isotropic- and Sensitivity Problems in Elasto-Plasticity Using the Consistent Tangent
workhardening rate-independent plasticity, in which the governing _ Operator Concept,” Int. J. Solids Strucs3, pp. 4461-4480. ,
equations are reduced to a systenfiofgeneral nonlinear differ- 171 Poon. H., Mukherjee, S., and Bonnet, M., 1998, “Numerical Implementation
ential equations. Numerical results for a simple illustrative prob- of a CTO-Based Implicit Approach for the BEM Solution of Usual and Sen-
: - N sitivity Problems in Elasto-Plasticity,” Eng. Anal. Boundary Eler@2, pp.
lem demonstrate the accuracy of three different numerical 557_269.
schemes that are proposed here for solving the problem. The auys] Hong, H.-K., and Liu, C.-S., 1999, “Lorentz GroupQ,(5,1) for Perfect
thors feel that the scheme based on group theory is particularly Elastoplasticity With Large Deformation and a Consistency Numerical

promising for the solution of this class of problems. Scheme,” Int. J. Non-Linear Mech34, pp. 1113-1130. o
[9] Hong, H.-K., and Liu, C.-S., 2000, “Internal Symmetry in the Constitutive

Model of Perfect Elastoplasticity,” Int. J. Non-Linear MecB5, pp. 447—466.
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A Unified Characteristic Theory
-0 mang' 4 for Plastic Plane Stress and Strain
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Singapore 639798, Singapore

H. Hao Based on the unified strength criterion, a characteristic theory for solving the plastic

Department of Civil and Resource Enginesring, plane stress and plane strain problems of an ideal rigid-plastic body is established in this
University of Western Australia, paper, which can be adapted for a wide variety of materials. Through this new theory, a

Crawley, Western Australia 6009 suitable characteristic method for material of interest can be obtained and the relations

among different sorts of characteristic methods can be revealed. Those characteristic

M.-H. Yu methods on the basis of different strength criteria, such as Tresca, von Mises, Mohr-

School of Civil Enginesring and Mechanics, Coulomb, twin shear (TS) and generalize_d twin shea_r (G_TS), are the special cases
Xi'an Jiaotong University, (Tresca, Mohr-Coulomb, TS, and GTS) or linear approximation (von Mises) of the pro-

Xi'an 710049, Xi'an, China posed theory. Moreover, a series of new characteristic methods can be easily derived from

it. Using the proposed theory, the influence of yield criterion on the limit analysis is
analyzed. Two examples are given to illustrate the application of this theory.
[DOI: 10.1115/1.1602484

1 Introduction such as Tresca, von Mises, Mohr-Coulomb, TS, and generalized
- ) . TS(GTY ([15,16)), are the special cas€fresca, Mohr-Coulomb,
The theory of plasticity deals with the methods of calculatlngr.s' and GT$ or linear approximatior(von Mises of the pro-

Etrgssﬁs anq Iztrgins ig f’i (rj]efort;ned b°d3|'. %ﬁetr ;l)atrt 0:: all Oft.(t:ggsed theory. Besides, a series of new characteristic methods can
ody has yielded, and It has been applied to lots of pract obtained from it. The theory put forward in this paper can be

problems. As a large number of plastic plane problems exist {ioq conveniently in all sorts of plane strain and plane stress
engineering practice, they have been drawing much attention fr?ﬁ‘bblems.

researchers throughout the wot[d —6]).
For plane problems, characteristic methods can be used to solve
the quasilinear differential equation systems of stress and velocity
fields. Judgements on the types of these differential equation s@s- The Unified Strength Criterion

tems can be made using the theory of characteristics. They may b@,sed on orthogonal octahedron of the twin shear element

elliptic or hyperbolic, dep_er!ding on the considerepl stress stafgqdel ([12]), a unified strength criteriofUSC) was developed
The methods of characteristics based on the von Mises and Treggach specifies that the failure occurs when a certain function of
criteria can be found in the literature of Kachari@y and Yan[8] the two larger principal shear stresses and their corresponding

for plane strain and plane stress problems. Mah8lptiscussed pormal stresses reach a limit val(d3,14)). The mathematical
the method of characteristics based on the Mohr-Coulomb Criter@(pression of the USC is

Yan and Bu[10,1]] established the method based on the maxi-
mum stress deviator yield criteriofalso known as twin-shear
(TS) yield criterion([12]).

The methods of characteristics based on the von Mises, Tresca, when 71,4 B0 1,= To5+ B, (1a)
and twin-shear criteria can be applied to the limit analysis of the
plane problems. However, they are only adapted for the non-SD
(strength-differentiglmaterials withry~0.58,, 79=0.50, and
To=20/3, respectively, but fail for the SD materials. Although when 75+ Bo 1= T3+ B0os, (1b)
the method of characteristics based on the Mohr-Coulomb criteria
takes account of the SD effect, it is only adapted for the materighere 7,5, 71,, and 7,3 are principal shear stresses amg,
with 7o= 00/ (07 + o). . - =301 03), o= 3(01— ), and Ty5= 3(0,— 03). 013, O,

Normally, the plane strain and plane stress characteristic the@rq ., are normal stresses corresponding to the three principal

ries are studied independently. In this paper, a generalized charé'%:éar stresses and;;= %(Uﬁ 03, O %(Uﬁ 0,), and ops

teristic theory system for solving the plastic plane problem of aﬂé(tfﬁ(fs)‘ in which oy, &, ando- are the principal stresses

ideal rigid-plastic body is established based on the unified strengt] .
criterion ([13,14)), which includes the strength-differential effect%gde‘)r(ﬁe‘;i dU;'S'B andC are material parameters, and they can

(SD effec) and can be used for a wide variety of materials. Those
characteristic methods on the basis of different strength criteria,

F=r13tbr,t B(oi13+bop)=C

F= 7'13“1‘ b7'23+ ,B(Ul3+ b0'23) =C

o.—0oy l-a (1+b)oo, 1+b
Corresponding author. Tel:65-67906199; fax:+65-67910676 B o.top 1t+a’ ot oy 1+at
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . L . . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 12,Where oy IS uniaxial ter_15|le Stre_ngtth IS unnglaI compressive
2002; final revision, Jan. 10, 2003. Associate Editor: M.-J. Pindera. Discussion on 8&ength, andv= o /o is the ratio of the tensile to the compres-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenigpfe strengths and<0a<1. The ratio is an index of the material

Mechanical and Environmental Engineering University of California—Sant f ;
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until fo%grength differential eﬁeC(SD eﬁech' If O, Oc and the shear

months after final publication of the paper itself in the ASMEU&NAL OFAppLIED  StIENgth7, are chosen as the basic material parameters, through
MECHANICS. Eq. (2) for pure shear loading, the parameberan be expressed as
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b=3/4 b=1 (GTS)
TS b=1 b=3/4

Mises b= 0.5
Tresca b=0

b=0
{(Mohr-Coulomb)

Fig. 1 Different yield loci on the 4 plane for non-SD materials

=1
(a=1) Fig. 2 Different yield loci on the 4 plane for SD materials (0

<a<l)
b= (octoy) 19— 010¢ 3)
(U'[_’T())O'c ASSuming A:(O'X+0'y)/2:(0'|+0'|||)/2 and B
The USC also can be expressed in terms of principal stressesasl (0x— 0)/2]°+ 75, = (o= o)/2, the USC in plane state can
follows: be expressed as
~ o ~ o1+ aos F=mA+nB=o, (5)
F=oy- 1+b (boatog)=0y, when o,< 1+a ' wherem andn are material parameters.
(4a) In the case of plane stress, the out-of-plane principal strgss
vanishes. Then, there are three cases to be distinguished in the
Er— S bo)— _ h - o1t aog state of plane stress.
= 17p(O1tboz)aos=oy,  when op=—m Case A Whena,=0,=0, it haso,=0,, o,=0y,, and o3
(4b) =0. From Eq.(4), we can know that
It should be noted that the paramebeplays an important role 1+b—ab 1+b+ab 24+«
in the USC. It builds a bridge among different strength criteria. It M= —7 75— "= 775 when BsAs< ——B,
is this parameter that distinguishes one criterion from another. On (6a)
the other hand, the scope of application of each criterion is also 1-b 2+a
represented by this parameter. Hence the USC is not a single m=1, n= 1+p’ when A>TB-

strength criterion but a theoretical system including a series of )

regular strength criteria, and it can be applied to more than oneCase B When ¢,=0=0,, it has o1=0, 0,=0, and o3
kind of material. In practice, when basic material parameters afeoy - From Eq.(4), we can know that

obtained by experiments, the value bfcan be determined 1+b—a 14b+a w1
through Eq.(3). Whenever parametdris obtained, the yield cri- m= . n= . when —— B<A<B,
terion for this sort of material is determined and the application is 1+b 1+b lt+a (6b)
possible. Consequentlyp can be regarded as a parameter by o _

X . . o . . l-a—ab 1+a+ab a—1
which the suitable yield criterion for material of interest can bgn= . n= ., when —B<A< ——B.
determined. 1+b 1+b lt+a

The USC is a series of piecewise linear yield criteria on#he  case C When 0=0,=0y,, it has ¢,=0, o,=0,, and o,
plane as shown in Figs. 1 and 2. The exact form of expression,, ' From Eq.(4), we can know that
depends on the choice of paramelbeWith different choices of

arameteib, the USC can be simplified to the Tres@a=1 and 1-b
EzO), the linear approximationspof Misda=1 andb=1/2 or m=-a, n=aj_, whenAs<—(1+2q)B,
=1 and b=1/(1+3)), the MohrCoulomb (0<a<1 andb (60)
=0), the TS(a=1 andb=1), the GTS(0<a<1 andb=1), and b—a—ab b+a+ab
a series of new strength criteria. In the stress space, the lower and =10 * " 17vp
upper bounds of the yield surfaces on thplane are special cases
of the USC, i.e.b=0 (a=1 for the Tresca or @a<1 for the when —(1+2a)BsA<—-B

Mohr-Coulomb andb=1 (a=1 for the TS or &a<1 for the . . - . .
GTS), respectively. When the parametevaries between 0 and 1, E%r the case of plane strain of an ideal rigid-plastic body, since

! ¢ vield surf b h imiti ¢ e strain rate in the direction (perpendicular to they plane
sbst:?neesdo yield surfaces between the two limiting surfaces can pg ishes  the relationr, = oy = (o + 0)12= (0 + o) 2 exists.

Since the principal stresses,=o,=03, it has oy=0, 0,
=0, andoz= oy, . Thus in the plane strain condition, it has

m=1—a, n=(l+b+a)/(1+Db). )
As 0<a=<1 and O<b=<1, from Eqgs.(6) and(7) it hasn=0.

3 Characteristics for Plastic Plane Problems

For the cases of plane stress and plane stwirgnd o, are
assumed to be two principal stresses in #e plane ando; 3.1 Characteristics of Stress Field. Neglecting body force,
=0, ando, is assumed to be the out-of-plane principal stresthe equations of equilibrium for plane problems are
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doy
IX

ITyy _ ITyy  dOy _

ay Tox ay

and the stress components can be expressed as
oy=A+B cos 2p, 0'y=A— B cos 2p,

0 8)

Ty =B sin 2¢,

9)

whereg is the angle fronx axis to the direction of principal stress

o4 in an anticlockwise way. Combining Eq$9), (8), and (5)
gives

nA+20.@=const, alongg line. A7)

Equationg16) and(17) express the properties of characteristics
of the stress field for the plane problems.

3.2 Characteristics of Velocity Field. From the associated
flow rule, it has

6: 7/%! (18)

where ¢ and o denote strain rate and stress tensors, respectively,

A m oA [ m d¢ and 7 is a non-negative constant. Under the conditions of small
x|\ 17 ycosp |+ EVARRE 2p|+2B WCOSZ‘P deformation and ideal rigid plasticity, it has
o O T
— o Sin2¢| =0, (10 XToox Y gy YT gy oax (19)
IA m IA m P Wherev_X andv,, are velocity components in theandy directions,
—| ——=sin2¢p|+—| 1+ —cos 2 | +2B| — cos 2p respectively. o o
Ix n ady n (28 To find the characteristics of velocity field, from E¢8) and
P (19), we know that
5y Sin2e] =0, (1) dilax  duylay v, ldy+avylax

Equation(10) is a quasilinear partial differential equation sys-

IFlday  dFldo,  IFIdty,

tem of the first order. When it has two different real roots, it is o€ ombining the above equation with the yield conditiéh and
the hyperbolic type and two families of characteristics can I®qg. (9) gives
obtained. When it has two equal real roots, it is of the parabolic

type and only one family of characteristics exists. When it has no _ Jux vy _
real root, it is of the elliptic type and no characteristics exist. (m-n cos 2p) ax (m-+n cos 2p) ay 0. (2e)
To utilize the method of characteristics, two supplementary in-
cremental expressions are needed, cos ZP(EJF ﬂ) —sin Z(P(%_ %) )
A A ay X X  ay
o Xt Wdysz, (118)  similarly, two incremental expressions are
Jdv dv
P ® —Zdx+ —dy=do,, (213)
P dx+ 3y dy=de¢ (11b) X ay
Equation(10) together with Eq(11) make an algebraic equation ﬂdXJr ﬂdy=du 1)
v-

system withdA/dx, dAldy, deldx, anddel/dy as unknowns. Let
the determinant of coefficients vanish, and obtain

dy —nsin2¢*n>—m?

dx  —ncos2p+m (12)
Assuming
COS 2= — ? (13)
then Eq.(12) can be rewritten as
dy
&:tar'(cpi ). (14)

As can be seen, the two families of characteristics make angles
+ ¢ with the direction of principal stress,. Here those corre-

sponding to the minus sign are assigned as familgnd those
corresponding to the plus sign as fami On replacing any

column of the coefficient determinant by the right-hand-side ter

of Egs.(10) and(11), it has

+yJn°—m?dA—2(o;,—mA)de=0. (15)
Whenm# 0, with Eq.(15) it has
2me+yn?—m?In(o,—mA)=const, alonga line,
(16a)
2me—yn?—m?In(o;—mA)=const, alongga line.
(16b)
Whenm=0, with Eq.(15) it has
nA—2o0p=const, alonga line, (17a)

Journal of Applied Mechanics

ax ay

Thus Egs(20) and (21) make an algebraic equation system with
vyl dx, duyldy, dv,ldx, anddv,/dy as unknowns. On assum-
ing the determinant of coefficients equal to zero, it has

dy —nsin2¢p=*n’—m?

dx m—n cos 2p

ax - (22)

It is shown that the characteristics of the velocity field just coin-
cide with those of the stress field. The following properties of
characteristics of the velocity field can also be obtained by a
simple derivation:

dvy+dvy tan(e— ) =0, (23)
dv,+dvytan(e+ ) =0, (2)

The present unified characteristic theory is adapted for the
plane stress problems when the parametarand n are deter-

ined from Eq(6), and it is adapted for the plane strain problems
when the parameters andn are determined from Edq7). With
different values of parametetsand «, the theory can be simpli-
fied to those characteristic methods based on Tresca, Mohr-
Coulomb, TS, and GTS criteria and a series of new characteristic
methods. Whetb=1/(1+ 3) or 1/2, the characteristic field sim-
plified from the unified characteristic field is the linear approxi-
mations of that based on von Mises criterion.

along a line,

along B line.

4 Application

On the basis of the obtained characteristics of stress and veloc-
ity fields, many sorts of plastic plane problems can be studied.
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Fig. 3 An infinite thin plate with a circular hole under a two-
directional uniform tension at infinity

Example 1 An infinite thin plate, having a circular hole with
radiusa (Fig. 3), is subjected to a two-directional uniform tension
g at infinity. Find the limit loadgs and the corresponding stress

distribution.

It is obvious that this is a plane stress problem. As the hole
free and the plate experiences two-directional uniform tension

infinity, on the edge of the hole there will he,>0 ando,=0,
and at infinity there will ber,= o, >0. Thuso,=0,=0 holds in
the whole plate.

According to the stress state of this problem and from Egjs.

and (6), the following yield conditions are available:

EmA B 3 1+b—ab
=mMA+nB=o0y, m= Wl
1+b+ab hen B<A 2+« B 24
: 1+b when a (24)
1-b 2+a
F=mA+nB=o0,, m=1, n=-—- when A=——B.
1+b o
(25)
Near the hole edge, with the available yield condit{@d) and Eq.
(19), it has
1 _,[ab—b— 1 -
¥=3°8 | brbr1) (26)
Then the differential equations of characteristics are
dr . . 1+b 7
rdo 9T N p @)

and equations of characteristics passing through the poimt
=a,0#=0) will be

ab r . i .
0= = \/mlna (plus for a line, minus for B line).
(28)

Using Eq.(16a) along «q line AP (see Fig. 3, we have
B
(1+b— ab) 6+ Jab(1+b) |nB—P:o.
A

As Bp=0/2, thus
(1+b—ab)/(1+b)

B _0’ a
Pm2 '
(1+b)oy 1+b+ab [a)(ttb-ab)/(1+b)
P72(1+b—ab)|© 1+b |r :

and the stress distribution can be obtained as
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() 0<b<1

() b=0

Fig. 4 Characteristics and stress distribution

(1+b)o, ab [a)\(t+b—ab)(1+b)
To=Aet Be= e | Trb T }
(1+b)oy a\ (1+b=ab)/(1+b)
O'rZAp_ P:—1+b_ab _ F (29)

whenas<r=<c. With r increasing, the difference betweer and
will decrease and, up t&\=[(2+ «a)/«]B, yield condition
) is to be in the limit of availability. Designateto denote this
radius, it has

1+b—ab (1+b)/(1+b—ab)
c=|1+ m a (30)
Substituting Eq(30) into Eq.(29) yields
(1+ a)(1+Db) 1+b
(o <~ 1tpta U =TT pra’t (32)

Whenr >c, the yield condition(25) is then available. However,
it is obvious that the equati0m=%cos’l[(l+b)/(b—1)] has no
real solution when &.b=<1, and thus the characteristics field is
not available. The stress distribution cannot be derived by the
method of characteristics. It must be solved directly from the
equation of equilibrium

dd‘:’ + I r 70_o 32)
and the yield conditiori25). The obtained stress distribution is
¢\ (1+b) ¢\ (1+b)
Ur:(p_"'t)(F) +oy, o-,,:—b(p—a't)(r) +oy,
(33)
wherer>c, andp=(o,).. Thus the limit load
Us=0¢lr=w=0¢. (34)

For the case ob=0, from equationy= %cos‘l(—l)zwlz, it can

be concluded that two families of characteristics are reduced to a
family of characteristics whose direction is the same as that of
principal stress, .

The characteristics and stress distribution are shown in Fig. 4,
in which variablec denotes the maximum radial of the character-
istics, and its value can be calculated from E2D). Whenb=1
and o=1, it hasc=2.2%, and the unified characteristic field is
reduced to that based on the T&0,11); Whenb=1/(1+3)
anda=1, it hasc=2.117a, and the characteristic field simplified
from the unified characteristic field is the linear approximation of
that based on von Mises criteriom2.07a) ([7,11]); Whenb
=0, the unified characteristic field is reduced to that based on the
Mohr-Coulomb criterion, which is the same as that based on
Tresca criterion for this special exam|&,11]).

Example 2 An acute wedge is in a plane strain state, with
constituent material being ideal rigid plasticity, angt€ #/2, and
surfaceAB subjected to uniform pressuRg,, as shown in Fig. 5.
Determine the limit pressuré, on surfaceAB.
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Fig. 6 The relation between the limit load p, and the param-
eter b

where parametemn andn are determined by Ed7). Since it is
given by Ref[15] that

1-sing 2c cose
T 1tsing’ 7 1tsing’

(43)

. ) wherep andc are angle of internal friction and cohesion, respec-
Fig. 5 Acute wedge under unilateral pressure tively, substituting Eqs(7) and(43) into Eq.(42) and introducing
two parameters, andc,, the unified limit load can be rewritten
as

When 0<y</2, a stress discontinuous line in the wedge will 1+sing, sin2v
appear([7,8,17,18). The characteristic field is shown in Fig. 5, Pu=C COt ey T sing, sin 55 L) (44)
where £ BAC=6, £ CAD=v, §+v=1. The regionsABC and ) ‘

ACD are regions of constant biaxial compression and uniaxigiheree; andc, are defined as

compression, respectively17,18). The constant stress regions 2(b+1)sine 2(b+1)ccose 1

ABC and ACD are separated by the line of stress discontinuity  sin¢,= ——, C= . . :

AC which is inclined toAB at an angles to be determined. The 2+b(1+sine) 2+b(1+sing) cose
different values a quantity may assume in the regidC and (45)

ACD will be distinguished by subscripts 1 and 2, respectivelyror the case abh=0 anda+#1, the unified limit load is reduced to
The angle between characteristiegnd 8 is 2i.

Using the stress condition on the stress discontinuous line 1+sine sin2v

= S 4
(7,8,17,19), it has Py=ccote 1-sing sin 28 (46)
A;+B;Ccos2p,=A,+B,c0s2,, B;sin2p;=B,sin2p,. This is the solution on the basis of Mohr-Coulomb criterion
(35) ([17,18)). For the case ob=0 anda=1, the unified limit load is
From Eq.(5) it has reduced to

mA; +nB;=mA;+nB,. (36) Pu= llinl Py=2c(1-cosy). (47)

Hence, with Eqs(35) and(36), it has (¢=0)

This is the solution on the basis of Tresca criter{ft8]).

M COY 1~ @) =N COL P11+ @3). (B7)  Wheny=a/3, the relation between the limit logz, and o are

From the stress boundary condition of the wedge, we haye Shownin Fig. 6. It can be found that the SD effect of material and
=—p, in regionABC, ando;=0 in regionACD. Thus it has the influence of intermediate principal stress on the limit load are
significant. Through the parametesisand b, the dependence of

_T s _ 38 the result of the limit load on yield criterion is also reflected. As
P17 0 P (38) " shown, at the same, the Mohr-Coulomb criterion{=0) leads
to the minimum value op, /o while the GTS p=1) leads to the
and maximum value of, /o .
B,=(oy+mpy)/(n+m), By=0c/(n—m). (39)
Substituting Eq(38) into Eq. (37) yields .
ubstituting Eq(38) i a-(Dyi 5 Conclusions
msin( 5+ v)=nsin(§—v). (40)

On the basis of the unified strength criterion, a new character-
It also has istic theory for solving the plane stress and strain problems of an
ideal rigid-plastic body is established in this paper, which includes

dtv=y. (41)  the SD effect and can be applied to a wide variety of materials.
Using Egs.(40) and(41), the values ofs and v can be derived. This new theory can be conveniently applied to the plane strain
Substituting Eqs(38) and (39) into Eq. (35) gives the unified and the plane stress problems. It builds a bridge among different
limit load sorts of characteristic methods. Those characteristic methods on

) the basis of different strength criteria, such as Tresca, von Mises,
o :(n+m)‘7t sin2v oy (42) Mohr-Coulomb, TS, and GTS, are the special ca§B®sca,
Y m(n—m) sin2d m’ Mohr-Coulomb, TS, and GT)Sor linear approximation(von
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Elastic Field in a Semi-Infinite
Solid due to Thermal Expansion
S H.pavies | OF @ Cpherently Misfitting
s | Inclusion
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Glasgow, G12 8QQ, U.K.

It is shown that the elastic field due to nonuniform temperature or a coherently misfitting
inclusion in a semi-infinite region can be derived simply from the corresponding field in
an infinite region. This follows from the work of Mindlin and Cheng [J. Appl. PRys.

931 (1950)] but it is not necessary to calculate the thermoelastic potential itself. In
particular, the displacement of the free surface is the same as that of the equivalent plane
in an infinite solid, increased by a factor of 4{L). The change in volume associated with

the distortion of the surface is reduced by a factor of 2¢)/3 from the free expansion of

the inclusion. A rectangular inclusion is used to illustrate the theory.

[DOI: 10.1115/1.1602481

1 Introduction can be written in terms of the thermoelastic potential inrdimite

L. ) .. solid ([25]). Unfortunately the potential itself tends to be difficult
The elastic field due to nonuniform thermal expansion in g caI((EuIa]lze. y P

semi-infinite solid is of considerable practical importance as well |n this paper Mindlin and Cheng’s solution is developed to
as being a basic problem of thermoelasticifi,2]). Another show that the elastic quantities for the semi-infinite solid can be
widely occurring issue is stress due to a coherently misfitting invritten in terms of those for the infinite solid and their derivatives
clusion, which can be treated in the same way provided that thermal to the surface. For example, the displacement in the semi-
elastic constants are identical in the inclusion and its surrounigdinite solid follows directly from the displacement and strains in
ings. Semiconductor technology provides plentiful examples tie infinite solid, which are usually easier to calculate than the
inclusions. Selective oxidation is an important aspect of complpetential. There is a remarkably simple result for the surface itself:
mentary metal-oxide semiconduct@€MOS) technology where The displacement has the same form as the equivalent plane in an
stress arises from the mismatch between silicon and its oxide, iafinite solid, increased by a factor of%4-v), wherev is Pois-
isolation trench of rectangular cross sectif®,4]) being one ge- son’s ratio. The strains at the surface follow trivially from this
ometry. Most advanced IlI-V devices are pseudomorphic, cofesult and the absence of traction. A simple result for the change
taining mismatched active regior(§5,6]). The composition of in volume also follows and can be used to deduce the volume of a
nominally uniform layers may fluctuate both lateraf[y,8]) and buried inclusion. The example of a buried rectangular region will
the elastic field around both wiréfl1-13) and dots([14—1g). ~Slab, because of its numerous applications.

A direct approach for investigating this strain is scanning probe

microscopy of a surface cleaved through the struct(t6,19).

The results should be compared with a solution of the elastic fiekl Theory

in a semi-infinite solid, rather than the infinite solid that is used in

. S h Consider the half space=0 where the plang=0 is free of
n?ost calculations and which is appropriate for the structure befqrrgction. Stress may arise from the linear thermal expansion
cleavage.

. . aT(r) of a region within this half space relative to its surround-
Several appro_aches have_ been us_e(_j fpr_ an an_alyt|ca| SOIUt'Ori'r&f( . Alternatively,aT(r) may be replaced by the linear fractional
the thermoelastic problem in a semi-infinite sqlld. Clij,z_]] ismatche(r) for an inclusion and this terminology will be used
solved the _problem of a_rectangular paralielepiped by using t{\n%nceforth. Some examples are shown in Fig. 1, either completely
method of images to satisfy most of the boundary conditions ¢ jeq or exposed on the free surface. The displacement and
the free surface and adding a further elastic field to satisfy thgains are measured with respect to the unheated state or the
remainder. He considered a more general initial strain but t@ﬁrroundings of the inclusion; the misi,(r) should be sub-
solution is cumbersome. Gl4g,8] used the same general apyracted inside an inclusion from the tensile strains calculated here
proach for the pure thermoelastic problem with much more trag-they are to be measured with respect to the natural state of the
table results, which were applied to the rectangular parallelepipRfa material. It is assumed that the elastic response is linear and

and a step. The basic problem is the elastic field of a centerghtropic with the same constants everywhere, and piezoelectric
dilatation, which was solved by Mindlin and Chef2R,23 and effects are neglected.
Sen[24]. The former solution is particularly attractive because it o ) ) o o
2.1 Infinite Solid. For the same inclusion in amfinite
Contributed by the Applied Mechanics Division offf AMERICAN SocieTy o Solid, Goodier{25,26 showed that the displacemanff)(r) can
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(a) (b) © The second expression is written in terms of the strains at the
image point, which are defined in the same way as the other

z>0 functions. This is the central result of this paper, and shows that
the displacement in the semi-infinite solid follows directly from

z=0 T T > x the displacement in the infinite solid and its derivative normal to
; S the surface.

2.3 Distortion of Free Surface. The distortion of the free

surface follows by setting=0 in Eq. (7). The term with the
Fig. 1 Inclusions (dark gray ) within the half space z>0 (light  Strains vanishes, the plain and barred displacements in the infinite
gray). Inclusions may be (a) fully buried or (b) exposed on the region coincide on this plane, and the displacement of the surface

surface, and (c) shows a semi-infinite slab. is therefore
= — ()
1+ v So(r’)dsr, U(Xayvo) 4(1 V)U (Xxyro)- (8)
e(r)= 1— v r—r] (2)  Thus the displacement of the free surface is given by that of the

same plane within an infinite medium, increased by a factor of

This integral is performed over the region whesg(r')#0, 4(1—v). This factor is greater than@xcept forv=1/2), a curious
which must lie in the half space=0. In the case of an inclusion feature that will be discussed in Sec. 4.1. The strains in the plane
that has been fractured by the surféEey. 1(b)), only the region of the surfaceg,y, &x,, ande,,, are related to those in an infi-
that remains inside the body must be included. nite sample by the same factor. The slope of the surface is

This elastic field has some simple properties because it is de- .
rived from a scalar potential. ou; a1 .

1. The dilatatiore*) is proportional to théocal value ofs, as ax A= m =

shown in Eq.(1). It therefore vanishes outside the inclusion. This . _ .

includes the regioz<0, which means that2¢=0 for z<0 with a similar result fordu,/dy. These results contain the shear
2. The derivatives of the displacement are symmetric, so tr}%{{a'” in theinfinite region; the corresponding strains at the sur-

&u(°;’)/ay (= 1/dm) Pl axay = aul™] ax for example ' ace of the semi-infinite region vanish because there is no traction.
¢ =(—Udm) PP =auf .

N £ th : imilarlv b . h The remaining straing,,, follows from the absence of traction
3. Derivatives of the strain can similarly be rewritten, SUCh ag,q the stress-strain relations for thermoelasticity. These take the

=4(1-v)el3)(x,y,0), (9)

9e$19y=(—UAm) Pl ax2ay = de )1 x. usual form
These properties will be used to simplify the results for the semi- N
infinite solid. Elexe0) = o= {0yt 027 (10)
i her is Y ’ lus. Th Iti
2.2 Semi-Infinite  Solid. Mindlin and Cheng [22,23 and permutations, whetg is Young's modulus. The result is
showed that the displacementfr) in the semi-infinite regiorz £,4A%,Y,0)=4velP +(1-4v)e™. (11)
=0 with a free surface a=0 can be written in the form ) » . . .
Finally, addition of these strains shows that the dilatation on the

47u=—-Vo—V,0,. (3) surface is

Here ¢ is the potential for the infinite system, defined in the pre- s(x,y,O):(5—8v)a(°°)—4(1—2v)s(z°§). (12)

vious section. The second potentig] is equal top evaluated at

the mirror image of the point in the plaree=0. Thusg,(x,y,z)  There would be no dilatation in the infinite region if the plane of
=o(X,Y,—2)=¢(X,Y,2), Where the bar denotes that the sigrzof the surface lay outside the inclusion, but this is not true at the
is changed. Finally, the second vector operator is defined by surface of the semi-infinite region because of the second term.

d - 2.4 Strain. Expressions for the components of the strain
Vo=(3-4r)V+2Vz_——4(1-1)kV7z, (4)  throughout the regiom=0 can be derived by differentiation of
- the displacement in Eq7). The results are
wherek is a unit vector in the direction. - — )
The first step is to simplify¥V, using the property tha¥Ze _ () ) Jexx
=0 in the region of interes(property 1 above This gives B Exx T (3 AW)en +22 iz’ (13)
VZZzp:2(9<£/(?Z. The middle term can also be reordered using )
Vz=2zV +k. Regrouping terms gives 6= 60— (1—41)sl2) + 27 ﬁZzZz , (14)
_ J J\ J
=(3— —,—,— —|e+2z—Ve. %
Ey;— & — & - s
The first term resembles a “twinned gradier{f27]). o * 9z
The derivatives can now be expressed in terma'®f. This is aze(‘”)—4(1—2v)§§°§) ' (16)

defined in the same way as the potential by the displacement at the
image pointu™(x,y,z) =u)(x,y,—z). Note that this isiotthe ~Of the other strainss,, ande,, follow the same pattern asy,
same as the mirror image of the displacement itself, which wouéthd €,, has the same form as,,. The freedom to interchange
entail a change in sign of the component alan@are is needed derivatives and subscripts on the strain in an infinite regap-
with the signs when derivatives ofz are taken; Uyc) erty 3 above¢ has been used so that all derivatives are taken with
—(—1/4m)delax but the changed sign of in  means that respect taz. The result for the dilatation is simpler becausé’
L") =(+ L/4m) dgl gz. The displacement within the semi-infinite =0- ThiS expression shows clearly that a dilatation -of(1
region is thus found to be —2v)&;) arises from the influence of the surface. Thus the dila-
5 tation no longer vanishes outside the inclusion, nor is it constant
— (=) 4T 7 =) ) T(w) within an inclusion of constant mismatch.
U=UTH @-dnui+2z az(ux Uy, Uz ©) These values of the strain should agree at the free surface with
" . ) —ra . those given previously. This is straightforward to confirm $o
=u+ (3= AU —22(e) &7, —2%3)). (7)  and other components in they plane. It is also clear that,,
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=¢,,~0 whenz=0, which ensures the absence of shear tractioB. Center of Dilatation

Care is ne_zeded farzz, hpwever, (|i)the inclusion is e_Xp_O_SEd on the To verify the above results, consider a center of dilatation lo-
surface(Fig. 1(b)). In this casee;,’ should be thg I|m|t|n.g value cated atro=(0,0¢) with £o(r)=S8(r—ro). The potential is
as z—0 inside the inclusion, whiles(?) always liesoutsidethe given by the solution of Eq(1),

inclusion. These two values differ by

e (xy,0=8%%(x,y,00— &, 17) p(r)= R, (28)

wheree ™) =[(1+ »)/(1— v)]e, from Eq.(1). Thus Egs(11) and
(14) are consistent for the normal strain on the surface, which ¢
also be written as

where R2=|r—r|2=x?+y?+(z—c)? The displacement in an
fHtinite region and that at the image point are

1+v S (X,y,2—cC)

£,4A%,Y,0)=4vely) +). (18) u >:1_V47T = (29)
This expression is useful because it is often easier to easier to
calculate the elastic field of the infinite system outside the inclu- o) 1+v S (X,y,—z—cC)
sion. Likewise, Eqs(12) and(16) are consistent for the dilatation ur= 1—v 4m (30)

RS
on the surface. 2
2.5 Stress. Similar expressions can be derived for compoWhereRz_X2+y +(z+c)?. The corresponding strains are given
nents of the stress in terms of those for the same inclusion in By expressions of the form
infinite reglon The results are simplified by using relations of the

_~\2
form o{=2G(e{y) — &) for the thermoelastic field in an infi- o) = v S| 1 3@ (31)
nite reglon Wher& = E/2(1+ v) is the shear modulus. This leads 22 1-v 4w R3 RS
to
) <x>:1+’/ S —3x(z—c) (32)
eS| =) 2T, 4 5
o= 0+ (3= 400y —4volD 1 22— (19) vamr RS

Again the barred strains are obtained by changing the sign of

e P g 40y do; (20) and writing R, instead ofR;. The displacement in the semi-
227 Y2z zz 9z ' infinite region can then be obtained from H®), using the dis-
placement and strains above for the infinite region, which gives
() ) &E;o;)
Oyy= 0y, T(3—4v)oy +22 (22) 1+v S| x (3.4 X 6xz(z+c) 33
uX*l—yEE ( V)E -t (33)
1 2
3= 03— 03— 22 9z (22) 1+v S z+c 2z 6z(z+c)?
uZ:l—yE _R3 —(3—4v 2 + — R3 —R5
The expression fow is similar to that foro,, ando, is similar 1 2 2
to oy,. Addition shows that the sum of the normal stres$gs, (34)
=0yt oyt oy, IS This agrees with Mindlin and Cheri@3], Sen[24], and Hu[3].
O=0)—4(1+ v)E&?. 23) The displacement at the surface reduces to
As in the case of the dilatatio) would vanish outside an inclu- u(x,y,0)= A+»)S_ Xy.70) . (35)
sion in an infinite region but the surface causes the second term to T (x2+y?+c?)%P

appear.
Care is again needed at the free surface of an exposed inclus%ﬁgol:‘;e%'rggf[edn‘?ﬂrgﬁﬂﬁgt%frégz'sé];e;‘me";’?ﬁaﬂ"tﬁg %ya:z?&ﬁec
because of a possible dlscontlnunym{zx » given by tor. Comparison with the result for an infinite region, E29), at

1 Ee, z=0 confirms that the displacement of the surface of the semi-
o) =0l §®(w)=a§(°;)+ = (24) infinite region is larger by a factor of(#—v), in agreement with
v Eq. (8).
There is a similar expression fa§,°;). The stresses on the surface 3.1  Total Change in Volume. The total change in volume
are thus found to be () due to distortion of the free surface is given by integration of
1 the displacement along in Eq. (35) over the planez=0. This
(%) ()~ (3— () gives 8Q=2(1+v)S, which is independent of the depth of the
T XY, 0) =41 =v) o~ 4voy 2 (3-41)0 center of dilatation. The result for an extended inclusion is there-
fore ([28])
=N Eeo
=4(1-v)oy) —4val; =, (25) 2
0= §(1+ v)J 3eq(r)dr. (36)
Oxy(X,y,0)=4(1—-v) Ui(y) ’ (26) . . . - :
The integral without the prefactor is the change in volume if the
=) (=) _ 2Es-;0 inclusion could expand freely, and it is known that a bounded
0(x,y,00=0"—4(1+v)oy; = 41+ v)oy, . body containing an inclusion expands by the same amount

(27) ([30,31]). The additional factor of @+ v)/3 applies to the surface
of a semi-infinite body and shows that this change in volume is
The expression forr,, is similar to that foro,, while o,,=0o,, smaller except in the case of an incompressible medium with
=0,,=0 because of the absence of traction. v=1/2.
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Fig. 2 Displacement of a semi-infinite region due to rectangu-

lar wires with  g4=1, »=1/3, width 10 units, and thickness 1 unit.
Wire (a) is buried to a depth of 1 unit while wire (b) meets the
surface. Light gray shows the region ~ z>0 and dark gray shows
the wire before the surroundings are strained. Thick lines show

the displacement of the surface and of planes that define the
edge of the wire with thin lines for their original positions.

4 Examples

(1+v)eg (x—L)%+T1?
—Uy(X,00= ——| (x—L)iIn—————
o | (x—L)>+B?
(x—R)2+T2 x—L
—(Xx—R)In ————— +2T| arctan——
(x—R)*+B? T
x—R B X—L X—R
—arctan? - arctanT— arcta B .
(42)

There is no complication if the inclusion reaches the surface and
B=0. It is possible to measure this displacement with a scanning
probe such as an atomic force microscope for submicron struc-
tures([10,19) or a stylus for larger structures, and this approach
has been used to characterize waveguides induced by irradiation
of silica ([32]). The displacement of the surface near the middle of
a wide, thin, shallow wire withR—L)>T reduces to

—u,=2(1+v)eo(T—B). (43)

A more physical derivation of this will be given shortly.

Figure 2 shows the displacement around two grossly misfitting
wires. There is severe distortion around the corners of the wire,
where the shear strain diverges logarithmicalyg. (41)). A sur-

4.1 Rectangular Inclusion. Consider first a rectangular prising result is that the deeper edge of the wire is displaced

“wire” of constant misfit ¢, parallel to the surface, of infinite towards the surface, which is particularly clear in the wire at the
extent alongy, with cross sectiorL <x<R, B<z<T whereB surface shown in Fig.(®). This increases the displacement of the
=0. Particular geometries are shown in Fig. 2. Its elastic field surface and can be understood as follows for a wide, thin, shallow
an infinite region was one of the first examples solved using thdre ([28]).

thermoelastic potential[25,26). The elastic quantities can be Consider first a wire in an infinite region. The material on either

written as sums of the form

e(x,2)=f,(x—L,z—B)—f (x—L,z—T)—f (x—R,z—B)

+f,(x—R,z—T), (37)
where for the potential
f __twy log(x2+ 72) — 3xz+ X2 arctan:
o(X,2)= 1=, %0 xzlog(x“+z°)—3xz+x“ arc an;
X
+22 arctan. |. (38)

side constrains the wire so that,=e,,=0, while its thin shape

allows relaxation so that,,=0 away from the narrow edges.
This givese,,=[(1+v)/(1—v)]eqy, which pushes out the wide
faces of the wire by

+v
t_
21-v

ul) = £o(T—B). (44)
Now suppose that there is a free surface close to the wire as in
Figs. 2a) or (b). A thin layer between the wire and the free sur-
face will be unstrained and have no effect on the argument. The
general result in Eq8) for the displacement of the surface shows
that the relaxation given by Ed44) is enhanced by a factor of
4(1-v). The outcome is consistent both with the result already
derived, Eq.(43), and with the change in volume given by Eq.
(36). However, the obvious approach is to argue that the displace-

The arctangents are principal values, which leads to singulariti@€nt in Eq.(44) will be directed entirely toward the free surface,

at the edges of the wire. Sums of the same form ag&4j.over
the following functions giveu(”, {3, ande{3):

1+v gg 5. 2 z
fx(x'z):r,,ﬂ zIn(x*+z%) + 2x arctan)z , (39)
¢ 1+v gy z 40
w(X,2)= 7 5 —arctan , (40)
1+v g
frd(X,2)= 1 Eln(xz-i-zz). (42)

There are similar expressions fof” and&{7), and the tensile

strains can be visualized in terms of angles subtended by the

edges of the wird[25,26)).

instead of equally on either side. The surface is therefore pushed
outward by

14
80(T7 B)

1)_
-

(45)

This is less than the correct result in E¢3) because the “am-
plification factor” 4(1—v)>2.

The extra displacement arises from the effect of the inclusion
on its surrounding#(28]). The constraink,,=e¢,,=0 induces a
compressive stress within the wire,,=—Egq/(1—v). This in
turn gives rise to an outward force per unit length o
— oy (T—B) at each end. For a shallow wire these can be treated
as tangentialFlamanj line forces on the surface, which causes
the surface between them to swell outward([88])

2 (1=20)(1+n)F  (1=20)(1+7)

Tz E 1—

eo(T—B).
(46)

The elastic field for the wire in a semi-infinite medium can now ) _
be deduced using the results in Sec. 2. For example, the normAis pulls the deeper edge of the wire toward the surface, as in

displacement of the free surface is given by E).as
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Fig. 2, and brings the total expansio” +u? into agreement
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with Eq. (43). The line forces also provide a good approximatiofower value of around 6%. Many factors could contribute to the
to the elastic field outside a thin, shallow wire, particularly at largeiscrepancy: the shape of the dot may not be ellipsoidal and the
distances. cleavage plane may not be through its center; the composition
- .. may not be pure InAs; the elastic properties have cubic symmetry
_ 4.2 Surface Cleaved Through Infinite Slab. A useful limit e than being isotropic; and the elastic response may be non-
is obtained by settin®d=0 andT—«. This describes a sample”near at such high strain

with a uniform misfitting slab such as a quantum well as shown in The elastic field due t i fitti t | llelepiped i
Fig. 1(c), which has been cleaved perpendicular to the layer. T%’ss © € astic fIelc CUE 10 a MISHFINgG rectanguiar paraiielepiped in

. dard hod of ! , f ) emi-infinite solid can be solved in a similar way to the rect-
IS a standar Fmet 0d O prep;relgg specan';e_ns O][ scanlnlgg fpr le, starting from the effect in an infinite regi¢a,36)); results
microscopy. -or convenience et —a andR=+aforaslab of "not pe given because this problem has been solved directly

width 2a centered on the origin. A difficulty arises in taking the([2 3,8,21). An ellipsoid i i ;

S ; ,3,8,21). psoid in a semi-infinite solid[37]) could be

limit of Eq. (45). for the ”‘;”T“’;" dlsplac%ment ocl)f the gurfﬁct)e befreated in a similar way using the field of a free ellips¢ias)).

cause a term |vergescasﬂr11 it d'oeT not depen rgman WIITDE  Quantum dots are often assumed to be pyramidal and the elastic

written as a constant C. The displacement is then field around such a dot near a surfagd8]) could be deduced
2(1+v)eq X—a from the results for a pyramid in an infinite regidri7,39). The

—uz(x,O):C—T I

(x+a)ln strain on the surface is of particular importance because it encour-

ages successive dots to grow in correlated stéekd).

X+a |
— | —(X—a)ln
—-(x-a)

The surface is unstraineut distorted) outside the misfitting
layer. Within the layer|x|<a, the strains are constant and given

by 5 Conclusions
£4(X,00=2(1+7v)eg, (48) It has been shown that the elastic field due to a coherently
misfitting inclusion or nonuniform temperature in a semi-infinite
0= (1+v)(1-2v) 49) 'egion can be derived in a straightforward way from the corre-
£24%.0)= 1—v 0. (49) sponding field in an infinite region. This follows from Mindlin and

Cheng’s approacli23]) but it is not necessary to calculate the
(1+2)(3—4v) thermoelastic potential itself, which is usually more difficult than
1—vp €o- (0)  the strain or displacement. The displacement of the free surface is
] ) ] enhanced by a factor of(#—v) over that of the equivalent plane
These results can also be obtained directly by the strain suppr@san infinite region. Part of this enhancement arises because the
sion method because of the simple geoméitBg]). inclusion is less contained in its outward expansion but the re-

4.3 Other Geometries. Itis often the case that the inclusionMaining effect is more subtle and is due to distortion of the sur-
had a highly symmetric shape when it was embedded in an infinC%é”nd'ngs' which pushes the inclusion toward the surfg2s]).
region, but this symmetry is destroyed when the sample is reducegSults for the center of dilatation agree with previous work and
to a semi-infinite region. An example is shown in Figh)l where Y/€ld @ useful relation for the total change in volume due to dis-
an ellipsoidal inclusion has been cut on a plane through its pof@tion of the surface by the inclusion. Arectangular inclusion was
axis. The elastic field around an ellipsoid in an infinite region i e;crlbed In d.e.ta'.l because it has many applications, including the
well known ([35]), but that of a half ellipsoid is much more com-Mit of & semi-infinite slab.
plicated. However, the displacement and strain in the plane of the
free surface can be deduced from the results from the symmetric
inclusion in an infinite region provided that the surface passgaferences
through a mirror plane. The displacement within this plane is sim-
ply half that of the symmetric body and E@) is replaced by

£(x,00=
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A general model of generalized linear thermo-viscoelasticity for isotropic material is
established taking into consideration the rheological properties of the volume. The given
model is applicable to three generalized theories of thermoelasticity: the generalized
theory with one (Lord-Shulman theory) or with two relaxation times (Green-Lindsay
theory) and with dual phase-lag (Chandrasekharaiah-Tzou theory) as well as to the
dynamic coupled theory. The cases of thermo-viscoelasticity of Kelvin-Voigt model or
thermoviscoelasticity ignoring the rheological properties of the volume can be obtained
from the given model. The equations of the corresponding thermoelasticity theories result
from the given model as special cases. A formulation of the boundary integral equation
(BIE) method, fundamental solutions of the corresponding differential equations are ob-
tained and an example illustrating the BIE formulation is given.
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Introduction ries. The second generalization to the coupled theory of ther-
The linear viscoelasticity remains an important area of resear pelasticity is known as the generalized theory with two
felaxation times. Mullef12] proposed an entropy production in-
not only _due the adve_nt and use of pplymers, but a_ls_o b.ecaléscﬁlality, with the help of which he considered restrictions on a
most solids when subjected to dynamic Ioadlng exhibit VISCOUSass of constitutive equations. A generalized of this inequality
effectg(see, eg., Fredudentf{&ﬂ). The stress-strain law for many,as given by Green and La&3], Green and Lindsaj14], and
materials such as polycrystalline metals and high polymers can §g hi[15]. The third generalization to the coupled theory is
approximated by the linear viscoelasticity thed@}, Many works  nown as the dual-phase-lag thermoelasticity, proposed by Chan-
were devoted to the viscoelasticity and thermoviscoelasticity thegrsekharaiah and Tz$W6,17 (C-T theory, in which the Fourier
ries, e.g., Blandi3], Gurtin and Sternberig], Christensei5], and |y is replaced by an approximation to a modification of the Fou-
llioushin and Pobedrig6]. Results of important experiments de-ier Jaw with two different translations for the heat flux and the
termining the mechanical properties of viscoelastic materials mperature gradient. One can refer to IgnadZ# for a review,
included in Koltunov's work[7]. The association and exploitationpresentation of the two generalizations L-S and G-L theories and
of integral equations with viscoelasticity have been given byome important results obtained under these two theories of ther-
Rabotnoy{8] and Gurtin and Sternbefd]. Most investigations in moelasticity, and to Hetnarski and Ignac44®] for a review and
thermal viscoelasticity are ignoring the relaxation effects of thgresentation of five generalized theories of thermoelasticity.
volume, although the rheological behavior of the volume in poly- The boundary integral equation meth8IEM) has been ap-
mers is confirmed experimentally in the work by Koves plied successfully to many branches of physics, applied math-
Biot [10] formulated the theory of coupled thermoelasticity t@matics and engineering sciences, due to its efficiency and ease of
eliminate the paradox inherent in the classical uncoupled thedmyplementation compared with the other numerical methods. Ap-
that elastic changes have no effect on the temperature. The hsfations in thermal stress problems were given by Cruse and
equations for both theories of the diffusion type predicting infinitRizzo[20], Rizzo and Shippy21], Banerjee and Butterfiel®2],
speeds of propagation for heat waves contrary to physical obsBrebbia et al.[23], and Ziegler and Irschik24]. Sladek and
vations. Five generalizations to the coupled theory were intr&ladek[25] set up the BIE formulation for the coupled ther-
duced. The first is due to Lord and Shulmdd] who introduced moelasticity. A treatment of scalar and vector potential theory di-
the theory of generalized thermoelasticity with one relaxation tintected towards the BIE formulation and description of numerical
by postulating a new law of heat conduction to replace the clagealing with these equations, are given by Jaswon and Symm
sical Fourier’s law. This law contains the heat flux vector as wellR6].
as its time derivative. It contains also a new constant that acts aghe present work consists of the introduction, general math-
relaxation time. The heat equation of this theory is of the wawmatical model, the formulation of the problem in Laplace trans-
type, ensuring finite speeds of propagation for heat and elagiggm domain; the fundamental solutions in Laplace transform do-
waves. The remaining governing equations for this theorfpain and the BIE formulation for the given model. An initial-
namely, the equations of motion and the constitutive relations réixed boundary value problem is considered as an example
main the same as those for the coupled and the uncoupled th#lgstrating the BIE formulation.
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the functions are, considered to be functionsxt), defined on 1. the equations of the coupled linear thermoviscoelasticity,
D(=DUB)X[0,). A superposed dot denotes differentiation when
with respect to time, while a comma denotes partial differentiation t—to— 7= =0 10
with respect to the space variables The summation notation is . 1= 2= To= V= . (10) .
used. The nonrheological properties of the material are assumed- the equations of the generalized linear thermoviscoelasticity
temperature-independent and time-independent, therefore the con- With one relaxation timéL-S theory, when
stitutive equations are of convolution tyd@]. _ _ Ny=1, t;=t,=v=0, 7o>0 (11)

The system of governing equations for the linear thermovis- . oo

where 7 is relaxation time.

coelastic solid consists of the following: 3. the equations of the generalized linear thermoviscoelasticity
The equations of motion onb(0,): with two relaxation timegG-L theory), when

ojiyj+pFi:pUi. (l) nozo, t1:t2:0, V>To>0, (12)
wherev and 7 are two relaxation times.

The constitutive equations onXf0,), [4,6]: 4. the equations of the generalized linear thermoviscoelasticity
. . ) with dual-phase-lagC-T theory, when
Sj=Rg(€jj), o=Rk(e—3aT), (2 1
where =1, t;=7y>0, 7o=74>0, t§=§ % v=0,
e T 7q=T75>0. (13)
Sj=oij— 06, €j=¢&— 3 Gj, o= 3 5. the equations of the generalized linear thermoviscoelasticity
of Kelvin-Voigt model,[29], can be obtained from the above
1 Egs. (2) and (4)—(6) replacing the operator®s(f) and
&j :E(ui,j+uj,i)- (3) Rk (f) by the operators
Substituting from Eqs(3) into Egs.(2) we obtain Rfs)(f x1))= 2,u(1+)\ )f(x t) and
- e JE
7ij=08;+Re| ej= 3 9 | (4) RY(F(x)=K| 1+~ f(xt)

respectively, wherex,>0 is the retardation period of
Kelvin-Voigt model[29].
6. the equations of the generalized linear thermoelasticity can

Equation(1) together with Eq(4) reduces to

. < (VA e . - be obtalned from Eqg92) and (4)—(6) replacing the opera-
p(Ui—F) RG( 7 ") tR(Eim8arT). () tors Ro(f) and Re(f) by 2uf(x.t) and Kf(x.t), respec-
. . . . tively.
The generalized heat conduction equation oX (@ ): 7. the corresponding equations of the generalized linear ther-

moviscoelasticity ignoring the rheological volume properties
(the bulk viscoelasticitycan be obtained from Eq&2) and

k (4)—(6) replacing the operatdRy(f) by Kf(xt).

9 . .. o
m) Tii=pCe(T+7oT+15T)+3ToarR¢

X (+ NoToe+128) — (Q+ Ny meQ+12Q). Let us introduce the following nondimensional variables:

(6)

The operator'?a(f), (a=G,K) is defined for any functiofi(x,t),
of class G, as

. : 2 ..
X[ =ComoXi; U =Conoli; t*=Cqnot;

75 =Cinore; v*=Cinov
( 7)

. . - t
Ra(f)=Ra(f(X,t))=f o(t—17) dr, (a=G,K) 5 . o
@ t1=Comots; 13=Comotas 75 =ChmoTe;

where Rg(t) and Rg(t) are two relaxation functionéshear and

bulk viscoelasticity moduliThe present formulation are valid for 7 =C2pory; Fr= Fi . * _ Q|
any, positive monotonic decreasing, relaxation functions, satisfy- q 0%0%a: : ano' kpcgng'
ing the conditions[5],
Rg(t)>0, Rk(t)>0, 3Rk(t)—Rg(t)>0 8 T-T C35 0, - .
o) k(1) «()=Rg(1) ®) p= YT To g _PT0% =0 b=0+00,
and the nonretroactivity conditiong2,27), rCo Y aT
Ra(t)=0Vte (—,0), (a=G,K). ) e T e 2 «_ R

. . . a-ij =7, RG RK =—.

Equations(5) and (6) are thefield equations(on D X (0,)), of K 3K K

the generalized linear thermo-viscoelasticity, valid for infinitesi-

mal temperature deviations from the reference temperafiyre The nondimensional positive constafy is introduced to specify
[5,28], applicable to the coupled theory, three generalizations, atitk value ofT considered. In terms of these nondimensional vari-
to several special cases as follows: ables, Eqgs(2), take the form(dropping the asterisks
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. ~ 3. e .
U:RK(ef(")), 0'|J:0'5”+§RG(8”7§§”), O'ji'j:UifF.
(14)
The field Egs(5) and (6) take the form
. 1. . “
Ui*Fi:Z RG(SVZUi+e’i)+RK(e’i7®’i) (15)
Pl . S . L
l+tlﬁ 0 ;i=(0+ 790 +150) + e Ry (e+ngrpe+15€)
~(Q+nomQ+13Q). (16)

The system of Eqs(5) and (6) is completed by the initial and
boundary conditions.

The initial conditions will be assumed homogeneous
_ _ "ui(x,t) MO(X,1)
ui(x,t)=0, ®(x,t)=0, =0, =0,
at" ot"

XeD, t<0, (n>1).
The boundary conditions

an

ojin=fi(X,,t) on B,X(0%); u=gi(Xg,t) on ByX(0w)

(18)

O=d(xg,,t) on Byx(02); O ,=0;n=G(xg,t) on

B, (00) (19

where the function$; , g;,  andG are given functions, equal to
zero whent<0 (B,,B,) and B,,B,) are two partitions of the
boundary surfaceB such thatB=B,UB,=B;UB,, B,NB,

=0
(25)
where(), X are the scalar potentials add,, Y, the vector poten-
tials of the vector fieldsy;, F;, respectively. Substituting Egs.
(25) into Egs.(21) and(22), we get

U=Q i+ Py, V=0, Fi=X;+euYei, Yii

X
(VZ=PHQ-mO=—

—, (26)
ci
(VZ-PY)W=— —, 27
C2
(V2=m2)® — aV2Q=—h,Q, (28)
where
3s S
C2=5(Rg+R); C§=TRG, Pr=c» (=12 (29)
n
wo 2 Swl 2
—, mj=——, a=eSbgRx, wy=SRcw-,
Ci 1 w3 oNK 0 Rcw;
bo=— 30
ofw_s- ( )

Fundamental Solutions in the Laplace Transform
Domain

We shall consider two cas€g28],
Case I: An instantaneous source of heat located-at/; where

ye(DUB), acting upon a viscoelastic body in the absence of

body forces, i.e., we assunig= (r) 4(t), F;=0 then

=B;NB,=¢, andn;=n;(xg) are the components of the outer

normal vector to the surface &g .

The formulation of the Problem in the Laplace Trans-
form Domain
Performing the Laplace transforrf30], over Egs.(14), (15),

and (16), taking into consideration the homogeneous initial co
ditions (17), and omitting the bars, we get

e
=8l

3
O'ZSRK(e_wZG)), O'ij:U(Sij""ESRG(Sij_:S

U'ji’j:szuifF (20)
3s S(Rg+4R
s2uj—F;= 4RGV2ui+¥evi—sRKw2®'i, (21)
030 j=sw;0+ sRKSZwe— Q. (22)
oijnj=fi(xg.s), Xxe€B,; U=0i(Xg,S), XgeBy; 23)
O=®(Xs,5), XpeBi; ©,=G(Xg ), XpeB,
where
_ 2.2 _ 2.2 _
w=1+ng7,S+1t55°, w;=1+7S+158°, w,=1+vs,
w3=1+t18. (24)

According to the Helmholtz theoremh31] the displacement and
the body forces can be expressed in the form

Journal of Applied Mechanics

L{Q}=4(r), L{F}=0, (CHY)

where

r=v(xi—y)(xi—yi.

penoting the corresponding fundamental solutionaufly, @@,

substituting the Laplace transforms from E¢&1) in the govern-
ing Egs.(26)—(28), using the Helmholtz equatioh32],

! 8(r)]= L gw 32
m[ Dl==7--e" (32)
and introducing the notations
1
En:(_l)nflefknr, gn:(_l)nfl kn"'r e’knr,
mby
V,=3&+k¥E,, C=—p—, 33
n gn n n 477('(%-'(%) ( )
we obtain for an infinite region in view of Eq&l7)
I 2
V(=0 Q¥(rs)=+2 E,.
1
I 2
0= (G-PDE, (34)

wherek?, k3 are the roots of the characteristic equation
k?—(mZ+ am+ P)k?+ PimZ=0. (35)

From (34) one obtains
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2 2
Cr; C
TJE]- gl’]) e(l):TEl kﬁEnv

ur(xy,s)=—

2
C
Su:—zE (rir jVa=é&ndij). (36)
r< 1

The Laplace transform of the traction vector in this case is ob-

tained from Eqgs.(20), (34), and (36). The expression fo® )
=0®(n; can be obtained frorB4).

Case II: We assume now th@=0, and an instantaneous con-

centrated body forcd;= S(x=Yy) &(t)6;; is acting at the point
=Y Whereye(DUB) in the direction ofx;-axis. Taking the
Laplace transform oF; , omitting the bars, We have

Q=0, F-:F<i>=5--5(r) (37)
Slncee”kYk =0 andequ =0, Eq. (37) with the second equa-
tion of Egs. (25 leads to: v2X() =(&;8(r));, VAYY
=(€iqpdij 8(r)) q from which using Eq(32), one obtains
. 1 (6 A Oyi
(h=— _— || . =" |4
X 477(!’)7 Yk 4776'qk(l’)i' (38)

Substituting from Eqgs(37) and (38) into the governing Egs.
(26)—(28), using Eq.(32) and the notation@= 1/4s?, An:(kﬁ
—m?) /4w C3k3(k3—k?), we obtain

/35ijr|
2

~ Bri
\I,E(])_fijk(r_z

Substituting Eqs(39) and(40) into Eqgs. (25) one obtains

6,]r,

Q=" Z Anén, (39)

[(1+P,yr)e P2r—1]. (40)

B(&,Jgr ririve

u(xy,s)= Z An(Bijén=T i1 Vi)

=u(y,xs), (41)

where

Por

2 L —Pyr 2 3
&= rP2+P2+F e "2, V.= rP2+3P2+F e

(42)

Solving Eqgs.(26) and (28) taking into consideration Eq$37),
(38) and using Eq(32) we get

L sC\ r;d;
®“><x,y,s>=( ° ) ‘2 &= u<“ (X.y,s). (43)
From Eq.(41) we get

Ruk

u ' BV, +E AV, 2 A, k )

(i r k=t x6ij)

e (44)
where

Rﬁk:5rvir,jr,k_(r,k5ij+r'j5ki+r'i5jk)
and

2 1 -P
P,=pBP5 P2+— e P (45)

The dilatatione = (r ;5 /r)(SA.K3€,) results from Eq(44).

The Laplace transform of the traction vector in this case is ob-

tained from Eqs.(20), (43), and (44). The expression fo®()
=®U)n; can be obtained fron3).
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Boundary Integral Equations

The dynamic reciprocity theorem for the model given by the
system of Eqs(20)—(22), supplemented with the boundary con-
ditions (23) and homogenous initial conditions, in Laplace trans-
form domain is,[33],

stj Ffl)ufz)dv+ wwzf QP@eMdv
D D

+sSwf an; glz)dA+J fHuPdA

BU BU'

+ w03 j qﬂl)@f?dmj G(”@(l)dA}:Sﬁ
By B2

(46)

where S}? indicates the same expression as on the left-hand side
except that superscriptd) and (2) are interchanged?].

To obtain the integral representation of the transformed tem-
perature and displacement inside a bounded reBiam terms of
the prescribedd, O ,,, fi=o;n; andu; on the surfaceB, the

|
Green functionsi* ®(1 u(JB 0, in infinite region and their
valuesg®¥ fi(l), <I)(1), G(l), gll), fO @0 andG® on the
same surface B, we substitute in E46) in view of Egs.(23), the
instantaneous heat sour@é? = 5(x—y), F{Y=0, and the corre-
sponding solutioru® and ®® we get

wzwA(Y)(@(Y,s):wzwf Q@)(l)dV—sSwJ Fiufl)dV
D D

+w2w3U ®,nCI>(1>dA+f G@“HA}
By B,

o

—(E) P4T)

(1o

fi(”uidA+f olf Jg,dA}

(47)

where (Z P4T) indicates the same expression as the preceding
four terms except that the superscrifi) is written above the
other function in every integrand of the surface integrals and

1 xeD
o _ |0 xe&(DuB)
fﬁ(x—y)dv(y)=A(x)= 1 : (48)
b _
E xeB

Secondly, we takd()=5;5(x—y), Q=0, and the corre-
sponding Green functions!”), @1 we get

SSwA(Y)uj(Y,S)=—w2wJ Q®(j)dV+sSwJ Fiuf“dV
D D

+w2w3U @f,?@dmf G“)@dA}
By By

+85wf fiufj)dAJrsSwf o'iknkgi(j)dA}
B(T BLI

0(j)
— >, P4T. (49)

(1)o

Taking into consideration Eq$10)—(13) we get for all the con-
sidered generalized theories; = vt,= vngty=0, and therefore
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0w, =(1+v,5+138%),  wws=(1+118), vy=(v+ty), AX)L(O(X,1))=W;(x,t) (51)

V2:(V+n07'0). (50)
The inversion[30], of Eq. (47) in view leads to where
|
AL,(uM (y,x, 7))
xt)—fo (¥,t= DLy (OP(y,x, 7)dV(y)d7— sf f Fi(y,t=) ——————dV(y )d7+8ff =)
Lo(f(y,x, _ t _ Lao(af(y.x, _ t _
XMdA(y)dT-stf gi(y,t— )MnjdA(y)dr+fj 0 (Y, t—71)Lgy(dY
ar 0Js, aT 0Je,
0(1)
X (Y, %, T))dA(y)dT-i-f f (yit—1)Ly(0V(y,x,7)dA(y)d7— D, PAT (52)
(1)0
_ L _— U
L(f(x,t)=| 1+ vo— t+t2 e f(x,t), Ly(f(x,t))= 1“‘”0%5‘”2% f(x,t)
(53)
_ AN
La(f(x,t)= 1+vlﬁ>f(x,t).
The inversion of Eq(49) leads to
A Lo(Uj(X, 1)) =Wy(X,t) (54)
where
t t
W (x,t) =& f f Fi(y.t=7)Lo(ul!(y,x,7)dV(y)dr— f f Qy,t—7)LT (0V(y,x,7))dV(y)dr
0JD 0JD
t t
+ff q)(Yt—T)L§(®fi.)@7,7))dA(7)dT+ff O(y,t— L3 (G (y.x,7)dA(y)dr
0JB, 0JB;
t t 0(j)
+sff fm—r>L2<u§“<ﬁr>)dA<7)dr+eff ai(Y.t=1Ino(g(y.x, 7)) dA(Y) dr—(E PAT| (55)
0JB, 0JB, (1)o
L§(f)=JOL3(f(W£))d§, |-’1*(f)=f0 Li(f(y,x,0))dZ. (56)

From Egs.(51) and(54) we obtain® (x,t) andu;(x,t): 2
A(X)uj(x,t)= — e’“Tq[u1 sin(t/7q) —u, cogt/7y)]  (62)

i. For the dynamic coupled theory, in view of Eq$0), (50), Tq
and(53), we get
ANOKD=Wy(X), AU KO=W,(xt).  Where
(57) t
ii. For L-S theory, in view of Egs(11), (50), and(53), we get 0,= f e cog r/rq)Wl(Y,r)dr,
- 1 t _ 0
AX)O(x,t)= T—e*"fof e” oW, (x,7)d7,  (58)
0 0 t
o 1 t - 0,= f e’ sin( 7/ 7g) Wy (X, 7)d 7 (63)
AX)U;(x, )= T—e*“fof e’ oW, (x,7)dr.  (59) 0
0 0
t
For G-L theory, in view of Egs(12), (50), and(53), we get u,= f e cog r/rq)Wz(Y, 7)dT,
0
l t _
AX)O(x,t)= “Vf e”"W,(x,7)dr, o _
0 U= | e""asin(7/7q)Wy(X,7)d7. (64)
0

AU (x,1) =Wa(x,1). (60) ' Generalizations of the Green-Somiliana formudsult from Egs.

(51)—(64) whenA(x)=1.
Letting x— &, £eB andA(Xx)=1/2 in Egs.(51) and (54), we
get

For C-T theory, in view of Eqs(13), (50), and(53), we get

. 2
AX)O =—e [0, sint/r)— O I _ _ _ _
(0= e 01 sinllrg) =0, costimy) ] (61) Li(OED)=2Wy (&) Lo(u (E8)=2Wa(E).  (65)
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Equation(65), with the boundary condition€l8) and(19) and  To find the solution given by Eq$69) and(70) it is necessary to
the limiting behavior of the solutions, can be used to set up thiketermine  the  two unknown functions f;(xg,t)

system of linear equations of BIE method. =0yi(Xg ,t)Nk(xg), and O(xg,t)=®(xz,t) on the partB,
(=B,) of the surfaceB. In Egs. (69) and (70) letting x— &
Example e B,, and substituting from Eq$66), we get the following sys-

. . . . . tem of two singular Fredholm integral equations in the two un-
In this section the mixed boundary conditions are considered {8 ..n functions:

illustrate the BIE formulation. Let the problem to be solved is to

determineu;(x,t) and ®(x,t), xeD, t>0 the solution of the 904(£,9) _ aGY(y.Es)
field Egs.(5) and (6), subjected to the homogeneous initial con- 0= e 2003 (y;s) 8n,—(§)dA(y)
ditions (17) and the following boundary conditio&8]: 2
G =g = o ) =G= - _ agV(yes)
u,(xB_,t) gi _o, @,n_(xB,t) G_O, XBEEZ B, (66) _SSwf f(ys) 9i (’y & )dA(y)
(X, ON(Xp) = fi(Xg 1), O(xg,H)=D(Xg 1), B, n’(¢) (73)
- _ Xe=Bi=B, 67 0=U{*(£,5) + wgw, f 0(y.5)GU(y.£,5)dAY)
heref;(xg,t) and®(xg,t) are given, orB;(=B,), functions. B,
It is_important to noticethat, the traction vectorf;(xg,t) .
=oyi(Xg,t)Nk(xg), and the surface temperaturé(xg,t) +gsf f.(y,9)9(y,£,5)dA(y),
=0(xg,t) are unknown functions on the paB,(=B,) of the B,
surface.

wheren’(§) is outer normal vector t®,.

For general boundary shapes the system of E¢fS. do not
seem to have analytical solutions, whence the necessity of recur-
ring to numerical techniques. The integrals have to be discretized
ffl)(YB,t):ffi)(yB,t):o, OV (xg, 1) =dW(xg,t)=0, and the problem reduces to finding the solution of a system of
linear algebraic equations.

Equationg(47), (48) taking A (x) =1, will give the s_olutioln ina
more simple form if the Green functions® , @, u® @1 are
satisfying the conditions

XBE B]_:Bo.. (68)
Equations (47) and (49) with Egs. (66)—(68) lead to the Conclusion

relations The direct formulation(applying the Betti-reciprocical theo-
. . . L . rem) of the boundary integral equation method, in Laplace trans-
ww2®(x,s)=®o(x,s)—w3w2J G)(y,s)G(l)(y,x,s)dA(y) form domain, is given for generalized linear thermo-
B, viscoelasticity. The Green functions for the corresponding
differential equations are obtained. For the mixed boundary value
_Eswj fi(ﬁs)gfl)(ﬁs)dA(Y), (69) problem a system of two singular Fredholm integral equations, in
B, two unknown functions on a part of the boundary, is obtained and
the necessity of recurring to the numerical methddamely
0(y,s)GY(y,x,s)dA(y) BEM) is shown. For any smooth enough boundary stiepguar-
) antee existence of unique normal to the boundary at each of its
pointg the integrals involved in the system of the integral equa-
tions have to be discretized and the problem reduces to finding the
solution (in Laplace transform domairof a system of linear al-
_ _ gebraic equations. Using a numerical inversion metfse#, e.g.,
where®,(x,s) and u?(x,s) are known functions, given in terms Honig and Hirdeg34]) the solutions in the physical domain can
of the Green functioné34), (36), (41), and(43), given on the part be obtained.
B,=B, of the surface, function®(xz,s), fi(Xg,S), the mass
force, and the heat source

— o=
SSij(X,S)—Uj(X,S)+w3w2fB

+osw J (7900 (7 X.5) dAY) (70)
B,

Nomenclature

O (x.S)= V.50V x s)dV(V) t = time; \, u Lame’s constantd{ =2\
o(X,8) wwszQ(y.s) (y,x,8)dV(y) +2/3 bulk modulus

T, = reference temperatur@; absolute tem-
— 1) —— — perature such thal —T,/Ty|<1
—eSwaFi(y,s)u§ [y x,8)dV(y) p = density;Cg speciﬁc heat at0|constant
strain; k thermal conductivity
_ (1)~ _ oi; = Components of stress tens&; com-
—wzwy | P(y,5)0 (y,x,5)dA(Y) ponents of stress deviator tensor
B1 components of strain tensag; compo-

o
Il

o o - nents of strain deviator tensor
—aSwJ’ fi(y,s)uY(y,x,s)dA(y), (71) u; = components of displacement vecter;
! =u;; dilatation
_ Rg(t), Rk(t) = relaxation functions
uf(x,s)=ssw f Fi(y,9)uf’ (y,x,8)dV(y) — 0w, f Q(y,5)0" 79, ¥, 11, 15, N, §o = constants
D D =

Ty phase-lag of temperature gradien;

phase-lag of heat flux

X(ﬁs)dv(y)JrsSwf f.(y,s)u(y,x,5)dA(y) at = coefficient of linear thermal expansion;
B, y=3Kay A
Mo = pCelk; e=30y/pCe; Ca=Klp; T=T
+ w30, f ®(y,s)01(y,x,s)dA(y). (72) —To+vT
B1 F; = components of mass force vector
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Q = the intensity of applied heat source per [17] Chandraskharaiah, D. S., 1998, “Hyperbolic Thermoelasticity, A Review of

unit mass Recent Literature,” Appl. Mech. ReVi1, pp. 705-729.
. [18] Ignaczak, J., 1989, “Generalized Thermoelasticity and Its Applicatiohtg”
€jx = the permutation tensog;; delta Kro- chanical and Mathematical Method¥hermal Stresses )il R. B. Hetnarski,
necker;& .. .) Dirac delta “function” ed., North-Holland Amsterdam.
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Dynamic Analysis of a Mode |
Propagating Crack Subjected to a
522 1 Concentrated Load
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M.-R. Chen This work investigates the phenomenon of mode | central crack propagating with a con-
Graduate student stant speed subjected to a concentrated load on the crack surfaces. This problem is not a

self-similar problem. However, the method of self-similar potential (SSP) in conjunction

Department of Construction Engingering, with _superposition can be successfu_lly applied_if the time _delgy and the origin shift are
National Taiwan University considered. After the complete solution is obtained, attention is stressed on the dynamic

of Science and Technology, stress intensity factors (DSIFs). Analytical results indicate that the DSIF equals the static

Taipei, Taiwan stress intensity factor if the crack-tip speed is very slow and equal to zero if the crack-tip

velocity approaches the Rayleigh-wave speed. However, the dynamic effect becomes ob-
vious only if the crack-tip speed is 0.4 times faster than the S-wave speed. Moreover, the
combination of SSP method and the superposition scheme can be applied to the expanding
uniformly distributed load acting on a portion of the crack surfaces.
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1 Introduction versal function” of crack-tip velocity and the stress intensity fac-

Dynamic fracture-related studies can be categorized as stea;@; for an equivalent stationary crack. Lamb's solution to the

state dynamics and transient dynamics. In a steady-state solut oblem of a suddenly applied concentrated load at a point on a
Y y ) Y &rﬁ'face of a half space marked a great advance while analyzing

the coordinate system moving with a crack tip is used. The spalig \wave motion in a solid;11]. Freund[12] further used the
field expressed in this coordinate system is assumed not to depggpn )

. . . b’s solution to study a semi-infinite stationary crack subjected
on time. The conventional propedure f_or the transient analys.{?i’ a concentrated load. For the crack with a finite length, most
which considers the _fuII dynamlc equations and th_e actual Nitiglsearchers considered a uniform load acting on the crack surfaces
and boundary conditions, is a transform method with the Wienelz it -+ ihe extension occurs in modd 8], mode 11[14], or mode
Hopf and Cagniard techniqud4]. The transient approach fre- ) v

" N th tical difficulty in derivi fracti IIl [15]. However, the case of a finite crack subjected to a con-
ggﬁrtwio;;]encoun ers mathematical dificulty in deriving an efleCiVEarated load has seldom been addressed. Therefore, in this work,

. . . - e investigate a concentrated load acting on the crack surfaces of
The transient problem is markedly simplified when the cracéi6 9 9

. . running crack. Although this is not a self-similar problem, this
expar}ds from zero length with a constant (_:rack-t|p speed. TRRk also applied the SSP method in which the origin shift and
resulting problem may be termed a self-similar problem and the,o delay are considered.
method of self-similar potentialSSP can be used to effectively
solve it. Pioneered by Smird2] in the 1930s and later applied to
wave propagation problems, the SSP method not only signifi- The Method of Self-Similar Potentials
cantly reduces computational effort, but also directly leads to
identification of fronts and types of reflected and refracted Waveeﬁastodynamic equations in terms of self-similar potentials in

In 1969, Thompson and Ro_bins{ih] reviewed pertinent literature which the value of the function is zero for timecO and is con-
of this method and applied it to various dynamic indentation proj—é\

The basis of the method is to seek a class of solutions of plane

lems in a linearly elastic half space. Since the dynamic (:ragtant on straight lines passing through the origin of they ()

: - g ace for time=0. Self-similar problems arise when the initial
propagation problem is also closely related to the dynamic inde

tation problem([3], the choice of the SSP approach to solve dy d boundary conditions are homogeneous functions of the spatial

. K . bl ) hat ai i pr?riables and time. The homogeneity of the boundary values
namic crack propagation problems Is one that gives considerafig, qs it possible in the method of self-similar potentials to reduce

promise of succesist,S]. the three independent variablesy;,z) to two variables X/t,y/t).

Despite its name, the SSP method is not limited to solutions {0,451 pe inferred that a self-similar solution to a physicai problem
problems having a physical similarity. This method has been apsn pe found if the loading is suddenly applied at the origin, or,
plied to resolve problems of a subsurface solifdeand suddenly it injtial conditions zero, if the boundary conditions involve a
stopping crackg7], in which they do not exhibit any physical -naracteristic length proportional to time.

similarity. ) _ _ This section summarizes the general application of self-similar
_ Dynamic fracture analysis often considers problems of & SeMjstentials to the solution of some elasticity problems for the half
!nflnltg running crack subjected to external loads. In a series Qfane[3,6]. For homogeneous, isotropic, and elastic plane prob-
!nvestl_ga?ons, Freun{:B—lO] co_nc_:l;:_dgd that the dy”Em'_ChStresslems, if the boundary tractions of the elastic half plane are homo-
intensity factor(DSIF) for a semi-infinite running crack with uni- geneous functions of degree zero in space and time, the displace-
form or nonuniform extend rate is given by the product of a “Uniment and stress fields under strain deformation expressed in terms
- of self-similar potentialsb’(6) and¥’'(6) are
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E{ f t J " = M =245
u,=R —ya “—6°®'(f)dodr x
oJo — 5t uu st
t (6 *‘I|“x0
+ff ov’'(0)dodr
0Jo
01

o= Re{ f (b~2-2a"2+ 262" (6)d6 e
i I

: (1b)

0 =St
+J 2067 2= ¥ (6)ds)|, (19) ’

0 case A
g [ o e-2ering B

“2067 — it
ff 20\b~?— 0¥’ (6)d6|, (1d) g‘
0 X0 —
01 y
o= Ref (b™2—=2a"?)®'(6)d#, (1e) ccise B
0

! X
— Xo
Yy

case C

01
Ty =M RE{ fo 20\a 2—2d’'(6)de

0.
+f “(b-2—262) W' (0)d8|, (1f)

0

wherepu, a, andb are the shear modulus, longitudinal, and trangsig. 1 The superposition scheme for a concentrated load act-
verse wave velocities of a homogeneous isotropic elastic mediuig on the crack surfaces
respectively. The function®’(6) and ¥'(6) indicate the deriva-
tives of the self-similar potential®(#) and ¥(6) which are un-
known in general for the boundary-valued problems. The values
0, and g, represent the parameters of the characteristic surfacesagth a constant spees| denote this case as case A. In p@irt a
the wave equations; =t— 0jx—y~/cf2— 912:01 j=1, 2 and they uniform stresso,=q acts onx_z_|x0| pf the crack surfaces. Th_e
are defined as problem of part(ii) is further divided into two cases: case B with
stressoy=( in the cracked portion to the right and case C where
1 it is to the left. Finally, the solution of the original problem can be
0j:r—2(tx+iy Vt2=r?c %) for x2+y?<clt?,  (2a) obktained b)(/) summir¥g up the solutions of c%sesrfb\, B, and C and
taking xq—0.

0 o 2y 3.1 Solution to the Case A Problem. From symmetry about
for x“+y“=cit%, (2b) thex axis, consideration can be limited to the regipr0 while
subjected to the following boundary conditions:

1
0;=—[tx+sgrx)yric; *—t?]
r

with j=1, 2 andc,;=a, c,=h. It is easy to verify, from Eq(2),

that on the surfacg=0, the parameters; and 6, are equal to ATy(X,01)=—q, [x|<st (39)

each other, i.e.9,= 0,=t/x. Therefore, we denotéx as #, and

then we haved; = 6,= 6, on the surfacg/=0. ATxy(X,01)=0, Vx (3b)
It is worth noting that the combination of the SSP method and

Schwarz integral theorerfil6] provides an extremely powerful Aly(X,00)=0, [x|>st (30

technique for solving the boundary-valued problems, e.g., wave ) )

propagation problems, with such less mathematical manipulati$fnere the subscript A denotes the solution of the case A problem.
[3,6]. However, for crack problems which are mixed-boundar{lotably, the boundary tractions in Eq8) are homogeneous and
problems, the Schwartz integral theorem cannot be used dire@fydegree zero inc andt. The velocities and displacements at

and therefore an approach of function-theoretic integral equati§4ery Point must be homogeneous functions of degree zero and
could be applied. one, respectively. Equatiof8b) reveals that the absence of the

shear stress on the entire surfagce0. Substituting Eq(3b) into

. . Eq. (1f) leads to the following relation:
3 Problem Description and the Complete Solution

Consider an unbounded homogeneous isotropic elastic medium. , —20yJa ?—¢? ,
The material is at rest at time<0. A crack begins to extend AV (0)= WAq) (0). (4)

symmetrically from zero length along theaxis with a constant

speeds for time t=0. Thex coordinates of the crack tips at timegnqtituting Eq.(4) into Eqs. (1d) and (1b) and defining a new
t are then=st. A concentrated loading acts on the origin of th%nknown function,V* ( 6)
AVy

crack surfaces such that the state of deformation is a plane strain.

A central crack subjected to concentrated loading is no longer a b-2a 2= ¢
self-similar problem. To solve this problem the method of self- VE ()= —bNa - ®'(6) (5)
similar potentials is still applicable by a superposition scheme ATy b-2-2¢2 ° '

illustrated in Fig. 1. Par(i) assumes that a uniform stresg
=—q acts on the faces of the crack, the ends of which move olihen the boundary conditions can be rewritten as
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% — uh?R(6?)

0 \/a’z— g

ao0y=Re AVy'(6)do=—q, [6p|>s"*

(6)

6,
AUy:Ref
0

where qv, is the velocity in they direction, i.e.,av,=daU, /dt,
and R(6%) =(b 2-26%)2+46*Ja - *\b ?— & is the Ray-
leigh function. Obviously the quantiVvy ' (6) represents the de-
rivative of complex-valued velocity in the direction. The prob-
lem is now to solve the mixed-integral equations of E§swhich
involve an unknown functionVy'(6). To do so, the boundary
condition, Eqgs.(6), is satisfied if the following conditions are
fulfilled:

(i) —ub?R(6%)/\a=?= 62 2V}’ (0) is analytic for| go|>s*,

(i) AV3'(6) is analytic for|go|<s™ ™.

Condition (i) clearly reveals that- ub?R(6%)/\a ?— 6 has
branch cuts either fronta™ ! to + or from b~ ! to + in the
0 plane. To locate all of the branch cuts qfa;‘ ()
— ub?R(6%) AV3'(6)/Ja >= 67 in the range|fp|<s~* such
that condition(i) holds, the quantityVy ' (#6) should have branch

0
AVy'(0)d6=0, |[6o|<s™! (6b)

}—»x:x—x0

H

H
Spe

Y

y oy
(a) physical plane

|

y
(b) physical plane after shifting origin to (x,,0)

Ilmg

a—l

A

—st—sAt

=—rst,

> Red

-1

(c) g - plane

Fig. 2 The case B problem:
the physical plane after shifting the origin to

complex @ plane

(a) on the physical plane, (b) on
(x0,0), (c) on the

points atd=+s~ 1. Moreover, the stress is nowhere more singular
than that under a concentrated load of finite magnitude, the high-

est allowable singularity il;\v;‘ "(6) at a point in thed plane is a
pole of order Z3]. It follows directly that,Vy ' (#) must be of the
following form:

©

> AFn(O)(s 2— )12

=—o0

AVy '(9)=n @)

whereF () is an entire function and is an integer. However, to

have stresses at the origin of the physical plane that are less &

gular than those corresponding to a concentrated load, the hig
order oon;"(e) should be a power of order1 when 6 ap-
proaches infinity. However; ub?R(62)/\a 2— 62 approache®
as 6—o. Therefore, the highest order Q‘R/; '(0) is a power of
order—2 asf#—o. Hence, we can infer tha ;"(0) must be the
form of

(372_ 02)3/2
Substituting Eq(8) into Eq. (6) reveals tha#A; andA, should be
real-valued constants. Since the branch cu@\@‘f’(&) are taken

from =51 to =, the first and second terms in E®) are anti-
symmetric and symmetric functions @ respectively, for| 6|

iA,0
-2_ 02)3/2'

AVy'(0)= 8)

(s

>s~ 1. In addition, these terms provide symmetric and antisym-
metric normal surface velocity on the crack faces because the

integration of an antisymmetri@ntisymmetri¢ function yields a

symmetric(antisymmetri¢ result. However, for the case A prob-

lem, the normal surface velocity is symmetric about yhaxis.
Therefore A,=0, and

(S—Z_ 02)3/2'

The constanfA; can be obtained by substituting E®) into Eq.
(6) and is equal ta/J, where

)
J=Re
fo \/a_2

The branch cuts of the integrand dfare all located in the range
a“1<|g)|<s™! on the real axis of thed plane. Therefore, the

AV; "(0)= 9)

i ub?R(6?)
_ 02(8_1— '9)3/2

de for |6g|>s"1. (10)
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upper and lower limits of the integration in E¢L0O) can be
changed to+a ! and +s 1. This observation implies that the
value ofJ is constant for anyf,|>s"1.

The solution here is the same as that obtained by Cherepanov
[17]; he expressed the integral of E4O) in terms of incomplete
elliptical integrals of first and second kinds. However, doing so
would appear to be undesirable. Indeed, the quadrature ifiLBq.

An be easily calculated as accurately as desired by selecting any
off the real axis of th@ plane, while the incomplete elliptic
integrals are not well tabulated. A convenient path proceeds along
the imaginary axis of the plane from the origin to positive in-

finity.

The displacement and stress fields of the case A problem can be
obtained by substituting E@9) into Egs.(5) and(4) to obtain the
self-similar potentialsb’(6) and ¥’ (6) first, and then substituting
the self-similar potential$’'(6) and ¥'(6) into Eq. (1). Herein,
we do not include the results of case A problem, whereas only the
y-component stresgo, is listed here:

, 0 i(b72-26%)2
pTHPADRS | T
%2 4i 9?\b~2— ¢?
+f Tdﬁ . (11)
0 (s72-6%)%?

The first and second terms of E@.1) represent the disturbances
of the P and S waves, respectively.

3.2 Solution to the Case B Problem. The problem of case
B is no longer a self-similar problem. However, the SSP method
can be applied if the origin shift and time delay are considered.
Define the new coordinate system,yY) which arex=x—xq, y
=y, and the new time systetg=t— At. Then, the crack-tip co-
ordinate which was=st in the old coordinate systenx(y) be-
comesx=st—sAt=st, in the new coordinate system,f/). The
crack tip ofx=—st in the old coordinate systenx(y) becomes
Xx=—st—sAt=—rst in the new coordinate system,/), where
r=(t+At)/(t—At) is dimensionless, as illustrated in Fig. 2.
Therefore, after the origin shift and time delay are used, the case
B problem can be viewed as the situation in which the rightmost
crack tip propagates in the positiwedirection with speed and

Transactions of the ASME



the leftmost crack tip extends in the negativedirection with }_,;=x+x
speedrs. Consequently, the boundary conditions of case B prob °

lem are —st VI
_ _ — X
sy (X0t =0, 0<X<st (12a) Y
— — y oy
Bay(X,O,to) = O, - I’St0< x<0 (1%) (a) physical plane
BTxy(X.0t0)=0, VX (12¢) .
— — — —st+ sAt st+ sAt
gUy(X,010)=0, Xx>sty or x<—rsty (12d) st [ st
where the subscript B denotes the case B problem. Notably, tt
use of the origin shift and time delay converts the non-self-simila ) g o .
problem into a self-similar problem. Therefore, the case B prob (b) physical plane after shifting origin to (—x,,0)
lem can be treated in the compl@&xplane, wheref satisfies the Imd
characteristic surface: ]
(t—AD—6,(x—xo)—y\c; 2= ?=0, j=1,2. (13) , > Red
-5 —a a’ rs)”!

Hence, the boundary conditions of E42) can be rewritten as -
_ (c) the complex @ - plane
B(Ty:q, 00>371 (14&)
_ Fig. 3 The case C problem: (a) on the physical plane, (b) on
goy=0, 6p<— (rs)~* (14b) the physical plane after shifting the origin to (X0,0), (c) on the
complex 6 plane.

eTy=0, V0q (140)
gUy=0, — (rs) 1< gy<s ! (14d)
Wheregﬁzazéztolfare the parameters &1 andgz on the 712: RefooT(ﬁ)de for §O< —(rs)" 4, (1)
surfacey = 0. With the aid of the absence of the shear stress on the 0

entire surfacey=0, the boundary conditions of Eq&l4) can be

— On — —

Jop= Ref *1(6)6d6 for gy<—(rs) 1, (18d)
0

expressed as

o —ub?R(6?) = 1 .
BayzRe . WBV), (#)do=q, 6o>s with
(153) (8= —i ub?R(6?)
B 2 5 B (afZ_ 02)1/2(571_ 0)3/2[“.5)*1_’_ 0]3/2'
—Re [ 2RO e (gydo=0, Fo<—(rs)?
BOy=Re o Ja -2 sVy (0)d6=0, fo=<—(rs) The displacements and stresses of the case B problem then can

be obtained without difficulty. However, only the stregs, is
(150) ¢ 1 y
listed here and it is

Buy=ReJ5°Bv;'(a)de=o, —(rs) " l<fy<s L (1%) bR % i(By+B,0) (b 2—26?)2 i
gy=— —
’ v 0 Va 2—6%(s - 0)%(rs) 1+ 6]%?

To solve the mixed boundary value problem in E&f), the un-

known functiongV} ' () must be obtained first. In a manner simi- 6,41 0°(B1+B,0)\b™*— ¢° (19)
lar to the case A problem, the unknown functg)nj "(0) is found o (s71=0)¥(rs) 1+ 6732 '
as follows:

3.3 Solution to the Case C Problem. The case C problem
iBy is not a self-similar problem either. However, if we shift the origin
(s 1= 0% (rs) L+ o] to x= ﬂgozand conside_r the time delayt, th_e new:coordinate
system K,y) and new time systerty, are defined ax=x+Xg,

gVy ' (0)=

iB.0 y=y, andt,=t—At. Consequently, the crack tip=st in the
+ 2 , (16) new coordinate and time systenxis st+sAt=rsty, and the left
(s '=0)%7(rs) 1+ 67%? crack tipx=—st is Xx= —st+sAt=—st, (Fig. 3), wherer=(t
whereB, andB, are real-valued constants which can be evaluateJEiAt)/(t_At)':The boundary conditions of the case C problem in
from boundary conditions of Eq$15a) and (15b). They are the complexd plane are
_ _ _ Do o1
_ qJdoo B —QqJin a7) ey~ _00< ° (202)
! Ji1dar= 1231 : J11d2o= 312321 coy=0, 0p>(rs) * (200)
where =0, Y, (200)
— bo— — = —sl<gy<(rs)~! 2
Iy= Ref “1(6)do for Go>s 1, (189) cUy=0, =8 7<bo=(rs) (e
0 where the subscript C indicates the case C problemdasatisfies
7 the characteristic surface:
_ o — _
= >g1 = = )
Iz ReJO (6)6d6or o=, (18) (t—=AD - (x+x0)—yVe, = #=0, j=12. (21)
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With the similar procedure in the case B problem, the solution tc At _ 0005
the case C problem can be obtained. Only the siesss listed t
X

st

mq
here: ~stf _,,uL_

¥

y

k
, - | |
ord [P (Cit C,0)(b~2—26%)? i E | 2sit |
o= —
T 0 va 2= @ (rs) 1= 01¥(s 1+ )32 g 0150 : :
> ]
N FZ 4i6%(C,+Cy0)\b = & 0} o2 o 01253 | |
-1 3121 312 ’ < ]
rs -6 s +46 [ ]
o L(rs) I ) £ 0.100 : :
where g 3 I I
© d
3 3 2 0.0754
aJ22 —qJds2 8‘ ] ! |
Ci==—=———=—, Com=tro———. (23) - 1 | |
J11d2o—=J12dn J11d20—J12021 8 0.050 | |
© ] | |
and 5 0.0253 I |
J —ReJéOI:(H)dH for gy<—s ! (24a) 3 ] ' !
11 0 0 ! §0000 1|lII||IIIIII|II|lIII|lIIl|IIII|IIIl
i} g -40 -30 -20 -10 0 10 20 30 40
- o= - :
J,;=Re f T(0)0do for Go<—s1, (24b) Distance x (m)
0
) Fig. 4 The normal surface displacement on the X axis for a
= fo= = 4 =6326 m/s, b=3463 m/s, s=2770.4m/s, t=0.01s
Jio,=Re 1(6)de for 6y>(rs) -, (24c)
0
- o= -
Joo= Ref 1(6)0dg for 6o>(rs) 1, (24d) ) b1 AG1(6) b2 AGy(0)
. 0 AU'y:,lLb A1|I’T‘I J;) (572_02)3/2d0+ fo (S*Z_ 02)3/2d6 y
with
. where
()= mlidily (b™2-26%)?
(a72_ 02)1/2(871_’_ 0)3/2[(rs)71_ 0]3/2' AGl(a):ﬁ’ AG2(0):462 /b72* 02'

3.4 Complete Solution to the Original Problem. If the so-
lution of case A problem is expressed hyp(x,y,t), then the
solutions of the cases B and C are denoted-yo(X—Xq,Y,t
—At) and —q¢(x+Xq,y,t—At), respectively. The relation be-

By expanding,G,(6) and,G,(6) aboutd=s"* and then taking
the dominant term in the series expansiga, near the crack tip
is approximated by

tween the magnitude of the uniformly distributed lo@@nd the $20,(b"2-2572)2  40,)b 2—s 2
concentrated loadr is q=F/2xy, for Xo(=sAt)—0. Therefore, Aa'y%,ubzAl Im —— —
the complete solution of the original problem is Va 2-s 2s"2— 67 Vs 2— 65
 F{o(xy,t) — p(x—sAt,y, t—At) — (X +SAty,t—At)}
lim .
At—0 2sAt . A
= =0.005
@) e o

Xo—0 (or At—0) yield the complete solution. To verify the re- |
sults, Figs. 4 and 5 display the displacemeptand the stress, |
on the surfacey=0 of the original problem. Rl y
Notably, the displacements of cases A, B, and C are homog " 1.0

neous functions of degree one in space and time, and stresses ,
homogeneous functions of degree zero. After the derivative png 0.5
cedure in Eq(25), the displacement of the original problem is theis )
homogenous function of degree zero and the stresses are degg

—1. Therefore, for the problem of the propagating central cracQ g g
subjected to the concentrated load, the displacement and str4=

fields are homogeneous functions of degree zero and minus o1 3

Hence, summing up the solutions of cases A, B, and C and takir EE—? m st
*N—

Illllllllllllllllllllll IIIIIII||||IIII

respectively. w -05
3
S
4 Dynamic Stress Intensity Factor Z’ -1.0
Equationg11), (19), and(22) suggest that the integrands are of“é
thetypeG(&)/(s"2—02)3’2and have hlgh singularitieswithaa -1.5 T T T T IV [T T T I T I T T [T TP TP TP T[T rr oot

power of order 3/2 near the crack tip. The asymptotic solution -1.0 -0.5 0.0 0.5 1.0
near the crac_k tip ceirl be determined by t_expandlng asymptotlca\ Dimensionless distance x/at

about the pointd=s~* and then performing the integration. To

illustrate the procedure, consider theomponent of the stress of Fig. 5 The normal surface stress o, on the x axis for a
the case A problemo,, which can be rewritten as =6326 m/s, b=3463 m/s, s=2770.4m/s, t=0.01s
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If 8, and #, are expressed in terms gfy, ande =x—st, then 200

- _ = 3
ub?s?A (b™?-257%)? X 1.75 concentrated load K, = F/~/nst
SEAEN i <503 st
e 1y 504 - - - - uniform distributed load K, = gV st
Va ?-s?\/—— —1-s%a? LL ] '
st st R 125
457 2\p 2-s2 ?  1.003
+ _ . (26) lc’ =
g iy 0.75
___‘/l_SZb_Z % 3
st st 8 0.503
Similarly, the asymptotic solutions of cases B and C can be four S 0_25_:
The dynamic stress intensity factd@SIF), which reveals the o E
stress behavior near the crack tip, is an important parameter 0.00 T T T T T T T T
fracture mechanics. Therefore, evaluating the DSIF is of releve 0.0 0.2 0.4 0.6 0.8 1.0

concern. According to Eq(26), the stresses near the crack tips
have square root singularity. Therefore, the DSIF of mode | rui
ning crack is defined by

Dimensionless crack-tip speed s/b

Fig. 6 Comparison of normalized DSIF for a central running
K (t)= |im{~/27rsa'y(s,y=0,t)}, (27) Icorggk subjected a concentrated load and uniform distributed

&—0

where o,(e,y=0}) is the y-component stress of the original

problem near the crack tip. Therefore, summing up the asymptotic4 1 concentrated Load. The DSIF of a central crack sub-

solutions of they-component stresses of case A, B, and C angdcted to a concentrated load can be evaluated from(Z3y.by

settingy=0 yield taking a very smallAt. Figure 6 plots the variation of dimension-
less DSIFK,(t)/K¢ virus dimensionless crack-tip spesth for

_ ub?s?R(s™2)A, st . ub?(2s)R(s™?)(B;5+B,) At=0.000%. This figure indicates that when the crack-tip spsed
Ty V2s?2—a e [sT2—a 2(1+r"1)32 is very slow, the value oK, (t)/Ko=1. This phenomenon is ow-
ing to the fact that the inertia effect can be neglected when the
Jsty ub?(2s*)R(r ?s72)(Cy+r1 1s71Cy) crack-tip speed is very slow. When the crack-tip veloatap-
X 1+ — = - proaches the Rayleigh-wave spegdhe Rayleigh function in the
\/‘= 20—2__ 2 1+ 1\3/2 ) . . k
& rfst-ai(l4r) first and second terms in E€R9) is zero, i.e.,R(s=c)=0; but
Jrs)&, the Rayleigh function in the third term of EQ9), R(rs>c), is .
x| ——2 s, (28) hegative and very small. Therefore, the DSIF for the crack-tip
Je speed approaching the Rayleigh-wave speed is close to zero.

_ . Moreover, the solid line in Fig. 6 denotes the DSIF of the central
wheree =x—st; ande=x—rst,. By substituting Eq(28) into  crack subjected to a concentrated load, while the dashed line rep-
Eq. (27), the DSIF for the original problem can be expressed agesents the DSIF of the central crack subjected to uniformly dis-

tributed load on the entire crack surfaces. According to Fig. 6,

K, ()= Tub’s’R(s™?) t F although the DSIF due to a uniformly distributed load decays
"= o2 a2 At ot rapidly with an increase of the crack-tip speed, the DSIF under a
2J\s a st concentrated load obviously decreases only whei®.4b. This

2mub®sRis™?)  t At 3322 occurrence is owing to the fact that when a concentrated load acts
+ AT — —|——=————on the center of the crack surfaces, there is a distance between the
JysTZ—a Z(1+r 132 At t 131032031202
I F
JllJZZ_‘]lZJZl \/77'_St
. V2mub?sR(r2s72)  t At
W(l+r—l)3/2 At t
rsd J F
x(  —— 12) : (29)
‘]11‘]22_‘]12J21 ‘JllJZZ_JlZJZl \/7"'St

Notably, for the static central crack with lengst subjected to a
concentrated loa#, the static stress intensity fact(®IF), which

is denoted a¥,, is equal toF/\/wst. Therefore, the DSIF of a
concentrated load is the product of so-called universal fun¢8pn
and the static SIF. It is noted that the temAt=st/(sAt)
=st/Xq denotes the ratio of the crack length and the applied loa
range. Moreover, if we lexy equalv, t, wherev, is the velocity 0 5 10 15 20 25 30
Of eXpanding Uniform |Oad, the’dAt:S/vL can be regarded as DlmenS|on|ess Crack_tlp Iocatlon st/XO
the ratio of the crack-tip speed and the expanding load speea.

Consequently, the DSIF in EQR9) can be directly applied to the gig. 7 Normalized DSIF versus crack-tip location for a mode |
problem of a central crack subjected to uniform distributed loadnning crack subjected to a concentrated load with a variation
expanding on a portion of the running crack surfaces. in crack-tip speed

Dimensionless DSIF K/Kg

Journal of Applied Mechanics SEPTEMBER 2003, Vol. 70 / 673



2.00— 2.00
3 v 3 v
< ] L o 1 L
& 1753 > s, g 1752 T R
x_. ] e — X] x— E —_— X
2 150 i 2 g0 T
@ e R 1253 /
p PR rs=b g
1.00-
I g 1003 4
5 § 0753 B rs=a
‘@ 7] 3
5 S 0.507 l
g g 0.25-
. C 3 C D
0.00 |IlIIIIIlI||||||||I||||||]||]||||I||||||I||||||||| 0>00 |||l|||||I||||||||II|||||||||l|||l||||||||||||||l
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless crack-tip speed s/b Dimensionless crack-tip speed s/b
Fig. 8 Normalized DSIF versus crack-tip speed for a mode | Fig. 10 Normalized DSIF versus crack-tip speed for a mode |
running crack subjected to a uniformly portion load with ex- running crack subjected to a uniformly portion load with ex-
panding speed v,/s=0.2 panding speed v,/s=0.5

applied load and the extending crack tip. Hence, the crack-tip . . A .

speed must be fast enough to exhibit the inertia effect. Howev gcrllg-gtliqtlzoztegricgrr?gllleE:SthS;r?m;IQ gégd 3};3\&352 tsaeuggr&zost

when the uniformly distributed load is applied on the entire Cracg{JbsonE: cpase the wave from the Igft end of the :31 lied load

surfaces and expands with crack tqven if the crack-tip speed is es not interact with the rightmost crack tip. TAB Iin%pof Fi

slow), there always exists the expanding load on the crack tip, ad%adisplays the subsonic rgsults Howevelro- when the rig%-tmost

the dynamic behavior becomes obvious as well. Hence, DSIF due . : Co

to a lilniformly distributed load decays rapidly. crack-tip speed equals tiwave speed, this finding corresponds
Next, the DSIF at crack tip varies with different time intervalsto.(t)l}']eirt]rmfig'ﬁ Th%ol?tﬁtrn%estpggct;k?tim 5'%‘(9%‘ ig?gflgfrtr?aﬁléﬁe

when the central crack is subjected to a concentrated load. Tﬁ% dbut | gh A P g ? ferred

can be simply achieved by fixingt and changing the timé wave speed but less t &tl_e/va}ve Speed, common yhre erre t?

Figure 7 summarizes those results. According to this figure, wh ﬁeirgggcs)girz:lf:acssel.ngee d Itnhee Ighilgériéﬁggeizgtﬁé e?(p?lzilnzg from

the crack-tip speed is very slow, the inertia effect cannot be i _-g_ (29). The third term of Eq.(29) is attributed to the case C

nored if the distance between the applied load and the crack ti L . )
small: hence, the value &, (t)/K, is Er‘;aller than one. Howeverppmblem' After the origin is shifted to the left end of the applied

the static state occurs immediately when the crack propaga; %dcggg éhergmeenfiggéz fgng'rgzgeg’sth% rgh;?r?st,v?trﬁ(:kéf dOf
some more distance. When the crack-tip speed increases, the ¢ Stla(refore t?le Ravleigh functi%n in the tk?irdpte?m O?Eﬁg) i?a
must propagate some more for the static state condition to ocgll ’ Y€lg

: nction of rs. Whenrs<hb, which is the subsonic case, this
However, when the crack-tip spesd-0.4b, although the crack . ' S -
tip is far away from the applied load, the value Kf(t)/K, is finding corresponds to the limeB. Whenb<rs<a (the transonic

. . SR .
less than one. Restated, the stresses near the crack tip is fFee: the Rayleigh functiorR(r—“s™%) has different values for

dynamic state, which is caused by the inertia effect of the crak .<b an_d b<rs<a due_ to the branch_ CUFS and, hen(_:e, there
p?/opagation. ' y exists a jump between line&B and BC in Fig. 8. For this ex-

4.2 Expanding the Uniformly Distributed Load. Assume
that the applied load is not the concentrated load. Instead, it is the
uniformly distributed load expanding symmetrically on a portior 2.00

; — v /s=0.1
of the crack surfaces with the speed. Consequently, the stress VUS= vy
waves are emitted from the ends of the expanding load, propage.  1.75 o w:;g'g : ittt o .
and interact with the stress field near the cracks. The DSIF duex? LS l
: : _ 1.505 —%— wu/s=0.7 W
expanding uniform load can be evaluated by setti¢t=v, /s L . VL/s=0.9

in Eqg. (29), as explained before. Figure 8 illustrates DSIF virug) 195 y
the crack-tip speed far, /s=0.2. According to this figure, there O
is a jump ats/b= 2/3. This phenomenon is due to the fact that th¢$}
waves emitted from the left end of the applied load interact witl@

c
Re]
7]
; 5
P
o, E o
st ~ st (@]
J J 000 IIIII|IIII|IIIIlIlIIIIIIIIIIIIIIHIIIIIIIIIII
v 0.0 0.2 0.4 0.6 0.8 1.0
4 v b ave Dimensionless crack-tip speed s/b
Fig. 11 Normalized DSIF versus crack-tip speed for a mode |
Fig. 9 Geometrical configuration of the disturbance of P and running crack subjected to a uniformly portion load with ex-
S waves panding speed v,/s=0.1, 0.2, 0.5, 0.7, 0.9
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On the Mechanical Modeling of
Functionally Graded Interfacial
Zone With a Griffith Crack:
Anti-Plane Deformation

An analytical model is developed for a functionally graded interfacial zone between two
dissimilar elastic solids. Based on the fact that an arbitrary curve can be approached by
a continuous broken line, the interfacial zone with material properties varying continu-
ously in an arbitrary manner is modeled as a multilayered medium with the elastic
modulus varying linearly in each sublayer and continuous on the interfaces between
sublayers. With this new multilayered model, we analyze the problem of a Griffith crack in
the interfacial zone. The transfer matrix method and Fourier integral transform technique
are used to reduce the mixed boundary-value problem to a Cauchy singular integral
equation. The stress intensity factors are calculated. The paper compares the new model
to other models and discusses its advanta¢B©I: 10.1115/1.1598476

one was fully developed by many investigators, especially by Er-
an and co-workergtherefore we refer to it as Erdogan’s
de). Here we do not intend to list all papers on this model, but
remind of some works about fracture analysis of FGM inter-
ial zones interested in this pagdr—14]. This model was also
Bplied in analysis of dynamic fracturgl5], thermal stress

1 Introduction

In engineering composites, interfaces usually act as sourcesﬁ?
failures because of the discrepancies in mechanical and thern&
properties between the component materials. One way to redlf
the apparent property mismatch between different materials is
introduce intentionally interfacial zones with continuously varyin 6,17, viscoelastic fracturé18], etc. The second model is gen-
mechanical properties known as functionally graded materi ?aily l’JSEd in mode Il fracture’ anallysﬁi;g—za
(FGM's). The absence of sharp interfaces in bonded materia 5(2) Model FGM's as piece-wise multilayeréd mediae refer

with graded interfacial properties alleviates the tendency towa{g it as the PWML model[23.24. That is, divide FGM'’s into

Lallure. FI?r the past dec?ge, thehfragtureEagaly&s of tr?.e FGM's haSitiple layers in the gradient direction. The material properties in
een a key topic in solid mechanics. Er ogan n Nis piﬂ)}_ér each layer are assumed constant. Indeed, this model was used

discussed the problem O.f crack growth in FGM's dge to ff"‘.t'gugarly in modeling nonhomogeneous media such as ¢28h

creep and stress corrosion cracking, and fracture instability. €3) The perturbation approach may be applied for FGM's with

concluded that use of FGM as interfacial zones would reduce t foperties varying slightly26,27.

magnitude of the residual and thermal stresses and thereforgyg first way is limited by the fact that the functions describing

greatly improve the bonding stress. Another merit of the FGNyiation of material properties and suitable to find the analytical
interfacial zone is that it eliminates the crack tip stress oscillatios/p sojution are scarce. The second way cannot eliminate dis-

for the classical interface crack,model. It has been found that tBgninuity of the material properties although it can reduce this
crack tip singular field in FGM's has the same form as that ifiscontinuity. Another problem in the second way is that no one
homogeneous med{&,3]. Thus many important parameters suclyag checked its convergence—how many layers should FGM's be
as the stress intensity fact¢8IF), energy release relate, crackyiyided into for a given manner in which the material properties
opening displacemenCOD), etc., which were developed in lin- \ary7 |n this paper, we develop a new analytical model for the
ear fracture mechanics for homogeneous materials can be ?‘Ppli'?SK/I’s with continuously varying properties and solve the prob-
directly to nonhomogeneous materials or FGM's. However, itiS@m of a crack in a functionally graded interfacial zone between
nontrivial task to calculate these parameters for FGM's with arbiy dissimilar materials subjected to a static antiplane shearing
trarily varying properties because the associate elastic boundggyy. The method is based on the fact that an arbitrary curve can
value problem(BVP) is difficult to solve. So far, several ways pe approached by a continuous broken line. Therefore we model
have been developed to solve this problem, which we summarkgf, FGM interfacial zone as a multilayered medium with the lin-
as follows: _ . , . early varying elastic properties in each sublayer and continuous
(1) Assume that the material properties of FGM's vary in &p the subinterfaces. The Fourier integral transform technigue and
prescrlbed manner such that the associate BVP can.be solved@iﬂ}:fagmar integral equation method are employed to solve the
lytically. Two models have been presented: FGM's with propertiggixed boundary-value problem. The stress intensity factors are
varying in exponential manner and in power manner. The formEFesented. We “discuss the convergence of the new model, and

- compare it with Erdogan’s model and the PWML model.
1Corresponding author.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF .
MECHANICAL ENGINEERSTor publication in the ASME QURNAL OFAPPLEDME- 2 Problem Formulation
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 19, . .
2001; final revision, Apr. 2, 2003. Associate Editor: B. M. Moran. Discussion on the 2.1 A New Multilayered Model for a Functionally Graded
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmeniaterfacial Zone. Consider a Griffith crack on the interface be-

Mechanical and Environmental Engineering University of California—Santa Baj: facimi :
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months :ﬁ\é\{een two_bonded dI_SSInlllal’ e_lastlc homogeneous half spaces,
final publication of the paper itself in the ASMBORNAL OF AppLiED MEcHan-  WIth the shear moduli, u*, which are loaded by remote anti-

ICS. plane shearing traction. Here the “interface” is not the “math-
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Fig. 1 Two dissimilar half spaces bonded through a FGM in-
terfacial zone with a Griffith crack (&) and the new multilayered
model of the FGM interface layer (b)

ematical interface” with zero thickness, but an interface layer with
finite thicknesshy, as shown in Fig. & The crack is located in

2.2 Transfer Matrix and Dual Integral Equations. The
only nonzero displacement component is alongzais, which,
in each sublayer, satisfies the following wave equation:

Al L9 (
#i(y) 2 T3y (Mj(y)
Substituting Eqs(1) and(2) into the above equation and applying
Fourier integral transform with respect xpwe obtain

aw;

W):O' i=12,...N. (3

95w L b W, o A
(7y2 a]“l‘b]yW SWJ_ ! ( )
where “7” indicates the Fourier transform. The solution of Eq.
(4) can be written as
W= Cy;(s)Ko(|s]y)) +Cai()1o(]sly)). %)

whereCy; andC,; are unknown coefficients{o() andlq() are
modified Bessel functions; arﬂ=b;1(aj+bjy). Equation(5),
together with the Fourier transform of stress componegt, can
be written as the matrix form:

{Si=[T,(wHC}, 1=12,...N, (6)
where
{S}=[W; 7,1, {Cj}=[Cy;.Cy1", (7
K0(|S|Vj) |0(|5|7j)
[Tiy]= (8)

mi(IsKo(Isly)) — wilsltoIsly)) ]’

where the prime indicates the differentiation.
The solutions associated with the homogeneous half spaces are
given by

1St =[To(Y){B}C10,  {Sn+1t=[Tns2(Y) HX}Coni1, ©)

where{B}={1,0", {X}={0,1}", and

ef‘s‘y e‘s‘y
[To(Y)]= —plsle”sy  uls|elsh]’
e lsly elsly
[TnrN]= _M*|S|e—\s\y M*|S‘elsly :

The subscripts “0” and N+ 1" correspond, respectively, to the
upper and lower half spaces.

The shear stress and displacement are continuous on the inter-
faces except that the displacement involves a jump along the crack
face onkth interface which is denoted dsw, . In the transformed
domain, we have
{Sj}_{sj+1}:{ASk}5kj )

y=h,, j=012...N, (10)

the interfacial region. This interface layer is made of the FGM'ﬁ/here{ASk}:{AVVkIO}T, and 5kj is Kronecker delta. The above

with shear modulusu(y) continuously varying fromu to u*.

equation is a recurrence relation which, on substitution of EB)s.

Generally,..(y) may be of an arbitrary form. However, considerand (9), may yield the expression 4¢C;} in terms of{AS},
ing the fact that an arbitrary curve can be approached by a con-

tinuous broken line, we develop a new multilayered model as {Cj}=([Ek]+[Ejk]H(j—k—l)){ASK}, i=1,2,... N,

shown in Fig. b. The interfacial zoneH;,0) is divided intoN

sublayers ; _;,h;) (j=1,2,... N;hy=0). The crack is on the

kth interface(k may be any integer number from 0 ). The

shear modulus in each sublayer varies linearly with the form:

1,2,...N,
@)

v_vhereﬁj is equal to the real values on the interfagesh,, i.e.,

p(y)=pi(y)=pi-(aj+byy), h=sysh;,, j=

aj:hj—l_hjﬂj—llﬂj ’ bj:Mj—llﬂj_l.

hj*l_hj h]*l_hj

)

Journal of Applied Mechanics

11)
whereH () is the Heaviside function, and

(W, ]=[Ty(h) T Y Tjsa(h);
[W]={B}[1,0]~ [W 1 {X}[1.0];
[Ld=[WdlTehol 5 [WI=[Wo]--[W,],  j>1;
[Wi]=[1];

[Lid=IWI MEJ  [Kjd=—IW] YLy
[Ex]={B}[L.O][W] L.
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Substituting Eq(11) into Eq. (8) and taking the inverse Fourier o ) 2i
transform, we have f sgr(s)e”*" Vds= X (23)
e M J{A —isxq i=12 and denote
W mal =5 | [Mp{ASde 'ds j=12,..N,
(= _— 1.
(12) Pu(ux)=—— [ |s7'my(s)+ 5 u|sis(u=x)]ds, (24)
where we have denoted 0
_ _ ) we can transform Eq.20) into a Cauchy singular integral equa-
(M d=[Ti(W (L] +[Kj JH(j —k—=1)), (13) tion,
which is nothing but the transfer matrix of the multiple layered ¢ ¢y(u)
medium with an interface crack. Writing this matrix as 277 Lu—x o dut ¢k(U)Pk(U xdu=—1,(x,hy),
* * ‘ |
Mi]= , 14 X|<c.
IMid=| (14) 25)
then we have The method of Erdogan and Gup&8] can be employed to solve
Egs. (25 and(21) numerically. To this end, we set
1 J* - .
Ty i==— m (s)Aw,(s)e '**ds, j=1,2,...N. f(u)
2w ) $i(U) = ———=, (26)
(15) Ji—u?/c?

Suppose the stress caused by the remote loading in the medfin Eds{(25) and(21) reduce tq29]
without crack is7-(x,y). Then the free traction condition on the ( -~ M f
15Ty Mk (cmi)
crack faces yields —
2M i=1 M ‘f

+77'(-"F)k((:77| Cf,)f(Cm) T;Z(ij -hk)

1 ® ~ ) )
Efiwmk(s)Awk(s)e"Sde=— ;Z(x,hk), |x|]<c, (16) %Zl f(cm)=0

where (27)

where 7;=cogm(2i—1)/2M), ¢ =cos@j/M), j=1...M—-1,

M= Mjly=n, (J=k or k=1). andM is the number of the discrete points tfc ) in (—c,c).

The single-valued condition for the displacement gives 3 Stress Intensity Factors
° _ In the present paper, special attention is devoted to the stress
f Aw(s)e”'**ds=0, |x|>c. (17) intensity factors(SIF’s) which are defined as
Kii= lim v2[x—c|7ry,(xhy). (28)

Equations(16) and (17) are the dual integral equations of the
problem.

x—*c*

The principal part of the stresg (x,h) at the crack tips is
2.3 Cauchy Singular Equation. Introduce the dislocation

density function of the crack, 7y(x,h )N_f d)"(u) u, Jul>c. (29)
1%
d(X)= 5[Awk(x)], |x|<c. (18) Following the procedure of analysis in RE80], we have
It is not difficult to prove, by considering the differential proper- K _ P \/Ef(tc), (30)
ties of the Fourier transform, that 2
. from which the SIF’s can be computed.
AWk=i371J Bi(u)etdu, (19) 4 Numerical Results And Discussion
—C
_ _ _ _ Numerical results for some particular examples are presented in
which, when substituted into Eq&l6) and (17), yields this section. As the first example, we consider a FGM interface
S c layer with a Griffith crack subjected to uniform loag and lying
'_f s—lmk(s)f (W eSUXduds= — 75 (x,hy) on the interface between the layer and one compofsest Fig. 1,
2w ), . yzmEn but the crack is on the axis). The shear modulus is assumed
varying exponentially,
x|<c, *
(20) w(y)=p* exp(By), (31)
. where B is determined byu(hg)=pux. The same problem was
S (u)du=0 1) studied by Ozturk and Erdogdi6]. Here we use the present
k ' model to solve this problem. The interface layer is dividedNin

sublayers with the same thickness. The convergence of the nu-
Considering the asymptotic behavior k() andlq() for large merical solution to Eq(25) was proved by Erdogan and Gupta
argumentg 28], one may prove [29]. However, to ensure enough accuracy of the results and to
avoid too much CPU time, we should choose proper valuéd of
for the present particular problem. To this end, we calculate the
SIF’s for smaller and larger values pf/u andc/h, by choosing
Therefore special care must be taken in interchanging the taiferent values ofM. The interfacial zone is divided into six
integrations in Eq(20). However, if we consider the following sublayers, i.e.N=6. The results are shown in Table 1 where the
relation: SIF’s are normalized by,./C. It is seen that smallévl can ensure

lim s~ Imy(s)=F u /2. (22)

S—*w
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Table 1 Normalized SIF's for selected values of M, for expo-

nential variation of the shear modulus of the FGM interface 2.5+
layer

wlu=1/122 wlu=22
M c/hy=1 c/hy=10 c/hy=1 c/hy=10 o 2.04
20 0.814045 0.708540 1.387912 2.688155 §
30 0.814164 0.731126 1.387802 2.502428 =
40 0.814179 0.736229 1.387790 2.489127 X
50 0.814182 0.739543 1.387787 2.474036 1.5 4
60 0.814183 0.739271 1.387786 2.476729

10 T T T T T T T T T M T

enough accuracy for smallef*/u and/orc/hy, while largerM is
required for largep*/u and/orc/hy. The following calculation is 0 2 4 6 8 10
generally carried out by choosirlg =40 or 60. c/h,

Now we have to answer another question—how many sublay-
ers should the interfacial zone be divided into so that enoudig- 2 Variation of SIF's with ¢/ hg for p*/u=22, with compari-
accurate results can be obtained? To answer this question, 398 between Erdogan's model, the PWML model, and the
calculate the SIF's fop*/u=1/22 and 22 withc/hy=10 by se- present new model, for exponential variation of the shear
lecting different values oN, and list the results in Table 2 modulus of the FGM interface layer
=60 is chosen in calculatignErdogan’s model giveK,, / 79\C
=0.737 for u*/u=1/22, and 2.5072 fop*/u=22 (see Ozturk .
and ErdogalrL[6]’L)L. It is noted thatN=6 aér ’g can (yield results calculation. The results of the same problem solved_ by the
approximating to Erdogan’s. As a comparison, we calculate tfiVML model are also presented in the table. The detailed com-
same examples using the PWML model, the solution of which c&/S0n is shown in Fig. 3, where the scattered crosses, dots, and
be obtained by replacingo(z) and I4(z) with, respectively, the dashed line indicate the same quantities as in F_|g_. 2. Again we
exp(—2) and exp#) in above formulation. The interfacial zone isC@n See that the present new model is more efficient than the
divided inN sublayers with the same thickness. As in Nozaki ang"WML model.
Shindo[31], the shear modulus in each sublayer is taken to be the .
value of the midline of the sublayer, but those in the sublayePs Concluding Remarks

adjacent to the crack plane are assigned the real value at the crack new multilayered model for fracture analysis of a function-
plane in order to eliminate the discontinuity of the shear modulygly graded interfacial zone with a Griffith crack under the anti-
across the crack plane. The results are also listed in Table 2. e shearing load is developed in the present paper. To check

may find that the present new model is more precise than ti efficiency of the new model, we calculate the SIF’s for some
PWML model for the samé&l. Further comparison between these

three models is shown in Fig. 2 which illustrates variations of

SIF's with c/h, for u*/u=22. The solid line is for Erdogan's tapie 3 Normalized SIF's for selected values of N with com-
mOdel, the scattered crosses for the present new mOdelNVlthparison of the present model and the PWML mode|’ for cosine
=6, the scattered dots for the PWML model wit=16, and the variation of the shear modulus of the FGM interface layer
dashed line for the PWML model with=6. The former three are
close to each other, while the last one deviates from theoilas c/hp=1 c/hy=10

increases. That is to say, a biggéris necessary for the PWML N "Present model PWML model Present model PWML model
model than for the present new model to reach the same precision,

; 2 1.307680 1.153604 2.060753 1.865835
especially for '%rgberf"a'“eﬁ ai'hg. del allows for arbid 1374017 1.291829 2.114980 2.047207
As mentioned before, the present new model allows for arbi-g 1388163 1.343830 2.126041 2.094627
trary variation of material properties of the interfacial zone. As an 8 1.393386 1.366477 2.130123 2.112845
example, we consider a FGM interface layer with the shear modu0 1.395866 1.378069 2.132065 2.121659
lus varying in the form of
wn(y)=a+bcogmylhg), (32) 25 ]
where a=(u+up*)/2 and b=—(u—pu*)/2. The crack is as-
sumed on the midline of the interface layer. The normalized SIF’s
for some selected values df with wlu=22 (or equally 1/2; 20 xxxxxxxxx
andc/hg=1 and 10 are listed in Table (=60 is chosen in o 4 xxx;e(’—‘
g x5
= X
Table 2 Normalized SIF’s for selected values of N with com- x x’,"’
parison of the present model and the PWML model, for expo- 1.5 4 »
nential variation of the shear modulus of the FGM interface x
layer ] )
x
wrlu=1/22 W lu=22 1.0 —_— ————
N  Present model PWML model Present model PWML model 0 2 4 6 8 10
“c/h
2 0.736915 0.750788 2.387198 2.688155 0
4 0.738881 0.743316 2.461473 2502428 . . ) . .
6 0.739271 0.741420 2.476729 2.427718 Fig. 3 Variation of SIF's with  ¢/h, for u*/u=22, with compari-
8 0.739405 0.740654 2.482122 2.454279 son between the PWML model and the present new model, for
10 0.739466 0.740270 2.484583 2.468313 cosine variation of the shear modulus of the FGM interface
layer
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examples and compare the results with those of Erdogan’s modég] Choi, H. J., Jin, T. E., and Lee, K. Y., 1998, “Collinear Cracks in a Layered
and the PWML model. We have found the following advantages Half-Plane With a Graded Nonhomogeneous Interfacial Zone-Part II: Thermal
K Shock Response,” Int. J. Frac@4, pp. 123-135.
of the new model over the other two models: 13] Shbeeb, N. I., and Binienda, W. K., 1999, “Analysis of an Interface Crack for
(1) The present new model converges faster than the PWM a Functionally Graded Strip Sandwiched Between Two Homogeneous Layers
model. For the two examples we considered, the new model con- of Finite Thickness,” Eng. Fract. Mech64, pp. 693-720.
Verges with SiX to e|ght Sub|ayers’ Wh||e the PWML model re_[14] Shbeeb, N. I., Binienda, W. K., and Kreider, K., 2000, “Analysis of the Driv-
quires about twice this number to reach the same precision ing Force for a Generally Oriented Crack in a Functionally Graded Strip Sand-
. X N . wiched Between Two Homogeneous Half Planes,” Int. J. Fra€4, pp. 23—
(2) The present new model involves no discontinuities of the ]
material properties, and therefore is expected to be applied in thes) BaBaei, R., and Lukasiewicz, S. S., 1998, “Fracture in Functionally Gradient
plane problem of interface cracks to eliminate the stress oscilla- Materials Subjected to the Time-Dependent Anti-Plane Shear Load,” Z. An-
tion at the crack tip. However, for the PWML model, special _ 9ew. Math. Mech.78, pp. 383-390.

: ; : 6] Noda, N., and Jin, Z. H., 1993, “Thermal Stress Intensity Factors for a Crack
attention has to be paid to the two sublayers adjacent to tl{é in a Strip of a Functionally Gradient Material,” Int. J. Solids Stru@0, pp.

cracks. ) ' 1039-1056.
(3) Compared with Erdogan’s model, the present one allowgi7] Erdogan, F., and Wu, B. H., 1996, “Crack Problems in FGM Layers Under
for arbitrary variation of the material properties. Thermal Stresses,” J. Therm. Stresskg, pp. 237—265.

[18] Paulino, G. H., and Jin, Z. H., 2001, “Viscoelastic Functionally Graded Ma-
terials Subjected to Antiplane Shear Fracture,” ASME J. Appl. Me68, pp.
Acknowledgments 284-293. . . .
) [19] Craster, R. V., and Atkinson, C., 1994, “Mixed Boundary Value Problems in
Y.-S. Wang is grateful to the Alexander von Humboldt Founda-  Non-Homogeneous Elastic Materials,” Q. J. Mat7, pp. 183—206.

tion for the support to the initiation of the present work. [20] Wang, X. Y., Wang, D., and Zou, Z. Z., 1996, "On the Griffith Crack in a
Nonhomogeneous Interlayer of Adjoining Two Different Elastic Materials,”

Int. J. Fract.,79, pp. R51-R56.
[21] Dhaliwal, R. S., Saxena, H. S., and He, W. H., 1992, “Stress Intensity Factor
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¢ x.son | A Displacement Equivalence-
= 1 Based Damage Model for Brittle

Y. Liu .
Research Scholar — .
Materials—Part I: Theory
Y. Yang
Teaching Fellow In this paper, a displacement equivalence-based damage model for brittle materials is
Y. D proposed. A new damage deactivation criterion, which depends on both the stress and
. uong strain states of the materials, is adopted. Based on the concept of effective stress, the
Research Fellow virtual undamaged configuration is introduced, and the assumption of displacement
o . o equivalence is proposed to correlate the damaged and the virtual undamaged configura-
School of Civil & Environmental Engineering, tions. Then, an additional crack-opening-induced normal deformation is introduced, and
Nanyang Technological University, the three-dimensional (3D) effect of these opened cracks is also considered. The evolution
Singapore, 639798 rule of damage is deduced using the Onsager relations, which also ensure that the second
law of thermodynamics is satisfiedOl: 10.1115/1.1599914
1 Introduction is also assumed that there is a certain equivalent relation between

sthgse two configurations. Thus, the stress-strain relationship of the

in endineering structures. Hence. the constitutive models of t amaged materials can be obtained from the corresponding virtual
9 g : ! uﬁdamaged material via certain preassumed equivalence rules,

brittle materials are continuously studied by researchers. Dam &h . . . -

. : : X as the principle of strain equivale rinciple of ener
Fheorles, based on thermodynamlqs and with damage variab ivalence[%] er?ergy correlat(iqon hypdgt%]gs[s"] pand the agg
introduced as the internal state variables to describe the matefj ption of diéplacement equivalence as propésed in this paper
defects, have been used by many researchers to model the beéﬂ/s- will be discussed in detail in Sec. 3 ’
iors of the materials. With much progress achieved in this fdrka ?lTE/the pure phenomenological meth.od's, the expression of cer-

f

the dan:?get-awechamcs-blz(a_sed mgdelfst h"?“’e lt))eﬁn qble ]Eo acicu_ra% ree energy or strain energy is usually provided diref@ly
account for the microcracking and softening behavior of materagsg, ,, \yhich the stress-strain relationship is derived. In this case,

[2]. . . . . the damage variables may not have obvious physical meanings.
There are three steps in analyzing an engineering problem usig pyE_pased methods are also known as the micromechanical

Brittle materials such as concrete and ceramics are widely u

variables, which shows how the stress and strain lead 0 NgWyiors of the continuum. This category includes the microplane
damage in the materials. These first two steps essentially estab, hod [4], the self-consistent methofd], the Mori-Tanaka

the E(I)'nﬁtitc:lml\w/e rellat.ionship of moellterials with defectds, i.e.‘, thf ethod[10], and the generalized geometric definitidrl, 12).
established the relations among damage, stress, and strain of thgeeraly, the pure phenomenological definitions are consum-

w.klllefn .tlhe macrodefectsracks will appear or when the Structures .oqarded as the accurate definitions, usually they are too compli-
WIThaI d finiti f the d includ hoosi cated for practical use. As indicated by KrajcinofAd@], a purely

b e ﬁ |n|t|o.nho the amagehlnc_u Ies c oosmg a prgperh Vafficromechanical theory may never replace a properly formulated
S fe (wit fOLW't out _aﬁ)paregt p fys(;ca mﬁan)n’ﬁ) esacnf et eﬁmacrophenomenological theory as a design tool. Compared with

efects of the materials, and to find out how these defects a micromechanics definitions, the effective-stress-based defini-
the macrobehaviors of the materials. The damage variables cofighs are simple in formulation and thus are widely used in engi-
be scalarsingle or multiplé, vector, second-order, fourth-order,,qring analysis. But sometimes they are too simplistic in describ-
or even eighth-order tensg8,4]. The influences of the defects inj, the complicated behaviors of the materials, so more defect-
the continuum can be studied via three approaches: the effectiff ceq effects need to be taken into account. In this paper, the
stress-based methods, the pure phenomenological methods, fifliional crack-opening-induced normal deformation and the
the kr]epnfafser!tatlve—volu?e-eéemefkll{a(/jE) based rge;]hodﬁ. . _three-dimensional3D) effect of these opened cracks are thus in-

The effective-stress-based methods assumed that there IS a i, ced to take into account the misfit of crack face and the
tual undamaged configuration corresponding to the real dama age activation under compressive loading.
configuration. The virtual undamaged configuration is usually de'The evolution rule of damage can also be obtained by three
fined using the concept of the effective area and effective s"eﬁ%thods: the experiment-based method, the micromechanical
and in this case, the damage variables usually have obvious phéﬁfthod, and the thermodynamics-based method. The first method
cal meaning, e.g., a decrease in the effective area to resist loag, fj,ges curve fitting[14] and statistics based or stochastic
Comtributed by the Anplied Mechanics Division ofiE AMERICAN SOCIETY OF method[9,15]. The experiment-based method is able to offer ra-

ontripute: Yy the Applie echanics Division O : - .

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- tional results for the .te5ted cases, but is unable to be generalized
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decemtol other more Complllcat.ed cases. As for th? Sgcond method,.the
ber 21, 2000; final revision, December 1, 2002. Associate Editor: J. W. Ju. Discussigicromechanical derivation of microcrack kinetic growth laws is
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Dep@'&rrenﬂy achievable onIy for the case of originally homogenous
ment of Mechanical and Environmental Engineering University of California—San ear isotropic elastic solids without microcrack interact[aﬁ]
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months aEerilrle thermodynamics-based method can be divided into thrée cat

final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- ! ! _
ICS. egories: the associated method, the nonassociated method, and the
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direct method. The associated metH@] introduces a damage Oy Oy
surface, which defines the reversible domain. The evolution of t f ;
damage should be normal to the damage surtflog rule) and == —
guarantee that the state variables of the material stay on the g =_= o= =»{l=_= .=

ceeding damage surfadeonsistent condition The associated [Zz="== it | || N Seeeteyry
method can also be deduced equivalently from the principle ; 4 1
maximum dissipatioff17], or the principle of minimum free en-

ergy[18]. The bounding surface meth¢d] is a generalization of Ow 20 ®). Ow<0 ©. G20 ; O <0
the theory of bounding surface in plasticign associated plastic- £y20 £u)20 £ <0 En<0
ity with a refined hardening rulgl9]) and thus is also a kind of

associated method. In the nonassociated mdth®@Q, however, Fig. 1 Definition of effective damage tensor

it is not necessary for the flux rule and consistent condition to be
derived from the same surface. On the other hand, the direct
method directly utilizes certain principles and relations in thermo-

dynamics, for example, the Onsager relatip2$], or specifies a (¢ O O
dissipation function in the space of thermodynamig€y) (where
Y is the conjugate variable of damaBg, to deduce the evolution [o]=[ O o2 O
rule of damage by the relatid22], L0 0 oy
(o1) 0 0 (—o1) 0 0
D=- —¢ 1)
Y L 0 0 <0'3> 0 0 < - C'3>

)

The difficulty of the thermodynamics-based method lies in how it the MacCauley brackets

choose the dissipation potential and damage surface in the stress X when x>0
space or thermodynamics space. Usually, the experimental obser- (X)= .
vation is resorted for thig20], while certain requirements in ther- 0 whenx<0

modynamics are considered, for example, the damage surfggf Gibbs energy can be decomposed as

should be expressed by a homogeneous function of degree one

[23]. ¢*=¢7(D7,(0))+¢&(Dc, —(—a)). ®3)
In this paper, a displacement-equivalence-based damage mcg

for brittle materials is proposed. The damage variable is defin ach to decompose the strain using projection operf@ais

using an effect_ive-_stress_,-ba_\sed mgthod. In the next section, a e‘1’.")ragon and Halnj26] dealt with the unilateral effects in the
damage deactivation criterion, which depends on both the s”ﬁ?ﬁ]cipal directions of the second-order damage tensor and used

ilar to the decomposition of the stress, there is also an ap-

and strain state of the materials, is discussed. The assumption o ¢ oin component as an indicator. If the normal strain compo-
the displacement equivalence between the damaged configural Mt in the principal damage plane, assumed to have a normal
and the undamaged configuration is proposed in Section 3. Ths ctorN, is negative, that is ’

an additional crack opening induced normal deformation is intro- ' ' '
duced, and the 3D effect of these crack openings is also consid- N-e-N<O, 4)
ered in Sec. 4. The evolution rule of damage is deduced using the . . .

Onsager relations in Sec. 5. The summary and discussion aret&ﬁn the crack in this plane is thought to be closed and have no

nally presented in Sec. 6. effect on the free energy.
2.3 Definition of Effective Damage. In this paper, the ef-

fective damagé is used to account for the opening and closing
of cracks as shown in Fig. 1. We assumed that only in case Fig.
1d, where the stress and strain are all negative, will the unilateral
2 Damage Variable and Effective Damage effect be present. In the other cag€dys. 1a, 1b, and k), the
) ] ) o ~cracks will not be able to resist any loading, so the damage is
2.1 Basic Assumptions. In this paper, the virgin materials “effective.” In fact, Figs. 1a and b depict Eq.(4). As for Fig. Ic,
are assumed to be homogeneous in macroscale. The defects ingifibough the cracks are closed, they cannot withstand any tension
material due to loading are assumed to be penny-shaped micngming if the surfaces of the cracks are assumed to be smooth.
racks or mesocrackKs]. It is also assumed that only elastic damotherwise, a permanent deformation due to friction and interlock
age occurs in the materials, that is to say, there is no plastic flgh the cracking surfaces will be present, and will contradict with
permanent deformation, or any other dissipation in the materiair basic assumption stated in Sec. faldetailed discussion is
A second-order damage tendoris used to depict the damage ingjven in Appendix A. In fact, the crack surface of a real material
the materials. When the principal directions of stress and strajjill never be perfectly smooth, so this assumption only represents
overlap with the principal directions of damage, the problem negdhecessary but not sufficient condition for the damage activation.
only to be considered in the principal coordinate system. With this assumption, we define the effective principal damage

2.2 Deactivation of Damage Effects. Deactivation of dam- components in the principal damage coordinate system as

age effects or unilateral effects refers to the phenomenon that _ D; when o;,=0 or ;=0
certain cracks do not affect the behavior of the materials under D= , (5)
certain circumstances. For example, the damage due to tension 0  when o;;<0 and ¢;<0

will not lead to an apparent decrease of elastic modulus Wh@jhere i) implies no summation convention énin the principal

compressive loading is applied in the same direction becauseqfmage coordinate system, the effective damage tensor can also
crack closurg24], as shown in Fig. d One of the approaches pg expressed as

used to deal with the unilateral effects is to decompose the prin- ~ o
cipal stress tensor into a positive part and a negative[gatt D=diagD,,D,,D3}. (6)
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x, (%,) X=X, x,,X,) ffTi(X)~5Ui(X)dA:f f?i&(xnaﬁi&(x»dk
X, =%, X,.X,) -
%= %,(X, X, X,) A% A

or

f fT-&UdA=J’J~?-5Dd~A. (10)
A A

The left part of Eq(10) is the work done by the force applied on

the damaged configuration, and the right part is the work done by

the force applied on the virtual undamaged configuration.
According to the first law of thermodynamics, if there is no

0 X (~ ) mechanical dissipation, thermal flux, or temperature variation in
11/ the deformation process, the strain energy accumulated in the two
X, (X’,) configurations will be equal, as shown in E§O). If certain me-
chanical dissipation occurs in the process such as plasticity flux,
Fig. 2 Damaged and virtual undamaged configurations the displacemensU can be decomposed into the reversible part,

SUE, and the irreversible parU'. So the equivalence afUE
leads to the equivalence of the strain energy accumulated in the
two configurations, and the equivalence 60' leads to the
3 Virtual Undamaged Configuration and Displace- equivalence of the energy dissipated in the two configurations.
ment Equivalence Because the energy dissipation due to the damage evolution is not
included in the assumption of displacement equivalence, this as-
3.1 Assumption of Displacement Equivalence. The effec- sumption is different from the energy equivalent principles Il pro-
tive stress and the equivalence hypotheses between damagedpased in Ref[7], which requires that the total dissipative energy
virtual undamaged configurations are the two basic conceptsiithe damaged configuration, including that due to damage evo-
continuum damage mechanigg. For damaged material, the ef-lution, equals the total dissipative energy in the virtual undamaged
fect of the defects is assumed to be mainly on the decrease of ¢oafiguration. But when only elastic damage occurs in the dam-
effective area for resisting the load. Thus, the virtual undamageded configuration, there will be no dissipative process in the
configuration is introduced, as shown in Fig. 2. A point in theorresponding virtual undamaged configuration. In this case, the
damaged configuratiof®: (X), is mapped to a point in the virtual energy equivalent principles Il will not be satisfied.

undamaged configuratioR; (X), and an area element in the dam-
aged configurationdA, with unit normal vectom is mapped to 32 Application of the Assumption of Displacement

an area element in the virtual undamaged configuraddn,with  gquivalence. According to the basic assumptions stated in Sec.
unit normal vecto. The distributive load on the surface of the2. 1, only elastic damage occurs in the deformation process. So, we
damaged configuratiorT,, can be transplanted to the virtual unmeed only to assume that the elagtic reversible displacements
damaged configuration following the rula7] of the two configurations are equivalent. We consider the element
- ~ -~ ~ (with lateral lengthl) of the damaged configuration under three
T-dA=T-dA or TdA|x=TidAlxx) i=123. (7) principal stresses. The stress-strain relationship can be expressed

Actually, Eq. (7) defines the effective stress;, in the virtual
damaged configuration and further determines the relationship be- e=[S(D)]- o, (11)
tween the damagP and the mapping functioX = X(X) [27]:

where[ S(D)] is the secant compliance matrix. Noting that
-T

aX] [ ax
=g-(1-D)7Y, (I-D)=det—|-|—5| . (8) € oy o, 0 0
axX| | dX
€20 =[S;(D)]} o2( =[S;(D)]| | O { +{ o2 +{ O
wherel is the unit identity matrix and the superscripfl implies €3 o3 0 0 o3
the transposition of the inverse matrix. 1 2 3
The two widely used principles of equivalence between dam- €1 €1 €1
aged and undamaged configuratigssain and strain energyare ={ st +{ €t +1{ et (12)
reviewed by Li[7], in which two energy equivalent principles are eé Eg eg

also proposed. These hypotheses focused either on geometrical
intuition or on energy conservatiqgaccumulated and dissipajed the strain of the element can be divided into three parts, with each
In this paper, an assumption of displacement equivalence part corresponding to a principal stress component. But this does
adopted and shown below that the equivalence of displacement imply that the total deformation of the element equals the sum
(geometrical intuitiop can also lead to the equivalence of workof deformations due to the three principal stresses applied sepa-
done by stresgenergy conservation rately, because the definition of the effective damfige. (5)]

The assumption of displacement equivalestates that the dis- depends on all of the state variabl& and o).
placement of the real damaged configuration is equal to that of theLet us consider the part correspondingotpfirst. According to
corresponding virtual undamaged configuration. In other wordse concept of effective stress, the effective area for resisting the
any possible displacement that occurs in the virtual undamag@@d,ﬂll will decrease to

configurationsU can be transplanted to the damaged configura-

tion following the rule A;=(1-DyA,, 13)
sU=6U or 8U(X)=dU;(X(X)), i=1,23. (9) and the effective stress will increase to
From Eqgs.(7) and(9), the following relation can be derived: 51201/(1—51). (14)

Journal of Applied Mechanics SEPTEMBER 2003, Vol. 70 / 683



o, 1Al G, 1, a rule to transplant the strain component from the virtual undam-
1 P 1 EAI aged configuration to the damaged configuration, i.e.,
''''''' 2 d——) au, U, ~ .
bt A1 b2 - %A'n ==t X0, 1j=123. (19)
n ] i
- @ || 2
! o = ! However, according to the assumption of displacement equiva-
= )/ lence, Eq.(9), we have
gn P
i x _ 2 X(X _ 0, X(X K k=123
| | 3% 0= 5 KON =222 KON 75, ihi k=123,
(a). Damaged configuration (b). Virtual undamaged configuration (20)
Fig. 3 Assumption of displacement equivalence Equations(19) and (20) demonstrate the difference between the

principle of strain equivalence and the assumption of the displace-
ment equivalence.
From Eq.(20), the density of complementary strain energy in

. . ) ) . the damaged configuration can be derived, under the assumption
We can then define a virtual undamaged configuration with a Cra$edisplacement equivalence, as

sectional areil, under the loading, , as shown in Fig. 8 The

displacement of the virtual undamaged configuration can be fur- 1 1 1/4U. 4uU.
ther deduced as = e =—i— | — + —
B W¢(o,D) 506 =5 75 (&Xj + 8Xi)

A== o 0. &

" E E(1-Dy’ L Ui 1 Ui X

B (15 2°00X; 270X, 9X;”

01~ 01 ~ o1
Al=—v=l=—v——lj=—v—"r— A, i k=
I vEN VE(l—Dl) 1 VE(l_Dl)\/”_l i,j,k=1,2,3. (22)

whereA} andAf are the normal and lateral displacements due taccording to the principle of strain energy equivalence, the
o, respectively, and and v are the elastic modulus and Poiscomplementary strain energy in per unit volume of damaged ma-
son’s ratio of the virgin material, respectively. According to theerial remains the same as that in the per unit volume of virtual
assumption of displacement equivalence, the strain of the elemantiamaged material, i.e.,

in the damaged configuration correspondingrtois

A} ~ . U,
d=Tm We(,D) = We(3) = 57y (22)
I E(1-Dy (16) aX;
11 A|1 o1 \/Z«—1 o1 [noting that in Eq.(22), o is not :isyrrlmetric tensor, so the con-
©TST T E(1-Dy) VA, - EVI-D, : jugated variable oF;; should beU; /aX;]. According to Eq.(8),

the density of complementary strain energy in the virtual undam-
Similarly, we can obtaire? ande®, and according to Eq12), the aged configuration can be derived as
total strain of the element in the damaged configuratiiis

e=el+ 2+ €°. 7 ~ o~ dUp 1 dxX;  dU;
W) oy 2 e i) % %,
The components of can be specified as i ef 1 9%k [
C1-D. s - =k, k=i, j=i 14U aX
€l 1 ! 1Dy —w1-Dy o1 %Uijd / ) a_):' (23)
=z —/1-D, 1 —1-D,|{72t, ef aX/9X] aX, IX;
€ —1- D; - N D3 1 73 Comparing Eq(21) with Eg. (23), we can find that the assump-

(18) tion of displacement equivalence defines a relationship between
the complementary strain energy density of damaged and virtual

where the effective stress componeais- o; /(1—5i). undamaged material as

3.3 Comparison of the Strain, Energy, and Displacement
Equivalency. From Eg.(198), it is apparent that the difference We( o D):de{%
between the assumption of displacement equivalence and the prin- ' axX
ciple of strain equivalence lies in the fact that the former has an

effect on Poisson'’s ratio while the latter does not. According to tn@oting thatdV= de(a?(/a)(}dv wheredV anddV are the vol-
assumption of displacement equivalence, the lateral deformatiges of the elements in the damaged and virtual undamaged con-
due to effective stress occurs only in the effective akeim the figurations, respectively. Hence, we can find that the difference
virtual undamaged configuration. So the average lateral defornjstween the assumption of displacement equivaléce (24)]

tion in the nominal areaA in the damaged configuration, will and the principle of the strain energy equivalefa. (22)] lies in
decrease becaus®=A, and the lateral strain of the damagedhe fact that the former considers the variation of volume from the
configuration is thus smaller than that of the virtual undamagethmaged configuration to the virtual undamaged configuration,
configuration. Actually, the principle of strain equivalence defindsut the latter does not.

AWE(T). (24)
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4 Additional Normal Strain Due to Crack Opening fo-‘ o
and 3D Effect of Cracks f '

4.1 Additional Normal Strain Due to Crack Opening. . _ o o o <
Extra strain has been used to consider the dilatancy effect in the —_ - - = = <=
brittle material28]. In this paper, it is attributed to the misfit of - = = o = <=
crack faces, and considered using additional normal strain due to| — — — — °°°‘=°°°

cracking open. We assumed that the crack opening will lead to an
additional normal strain as shown in Fig. 4, and the total normal *
strain will increase to *

!
€(ii)

4
(]‘_—E)i)é, (25) & = &=+ ——=z-1¢

i~

where & is a model parameter anf;;, is the normal strain ob-

tained from Eq(18). From Eqgs.(18) and(25), we obtain Fig. 4 Increase of normal strain caused by opening of cracks
|
_D.y-1-o _ D% 1-D.)-05  _ D)% 1-D.)-05
) (1-Dy) 7 v(1-Dy)%(1-Dy) v(1-D)~%(1-D3) "]
el =z —v(1-Dy) %%1-Dy)~° (1-Dy) 12 —1(1-D,) %(1-D3) %% 0poy . (26)
€3 ~»(1-Dy) *(1-Dy)° —w(1-Dp) *Y1-Dg)? (1-Dgy)+7? 733

We assumed thad=0.5, so as to ensure that the secant complaround each crack opening. Therefore, corresponding to the dam-
ance maitrix in Eq(26) is symmetric. aged configuration with the 3D effect, we define a new virtual

4.2 3D Effect of Crack Opening. When uniaxial compres- undamaged configuration with cross secthgrs Ajw; . Similar to
sion is applied as shown in Fig. 5, according to ), 53:0, the method used in Secs. 3.2 and 4.1, the new constitutive rela-
and according to Eq(26) the elastic modulusrs/e; will not  tionship can be expressed as
change. But it is well known that, in reality, there is degradation
of the elasticity modulus in direction 3. The micromechanical
analysis and experimental resy29] indicated that it is the fric-

tional sliding on the preexisting slant flaws that leads to tensio € w; 2 —vo; Pw;"? —vo; e 1?

cracking and splitting in the direction of the compression loadin e b 1) v V2,12 w32 B I 1

(as illustrated in Fig. &). Thus, the degradation of the elasticity| “2( ~ E 12 2 2 s

modulus under compression is due to a different mechanism frok€3 —vo; Po; P —ve, Y2w 12 w, 32

that under tension. Some authors used different damage variables

for the tension loading and the compression loading, and the two (251

damages hence evolved independefdg). X3 0, (28)
However, according to micromechanical analy&9], the deg- o3

radation of the materials’ behavior in the direction of compression
due to the microscale frictional sliding can also be measured or

expressed by the damagBs and D,, which are attributed to
microscale tension cracking. Therefore, the cracks in brittle mataad it is exactly the same as E®6), if w; is replaced by (1
rial, which are considered to be all penny-shaped, can also affech ). The Gibbs free energy can be written as
the elastic performance in the direction parallel to the cracking
plane.
However, the complicated result of the micromechanical analy-
sis may not be suitable for use in an effective-stress-based model,
which is supposed to be simple and easy for engineering applica-
tion, as indicated in Sec. 1. So, in this paper, we introduce a

so-called 3D effect of the crack opening to account for this ph 5
nomenon, which assumes that there is a stress release zone ar * %
each preexisting flaw31] and the tension crack will lead to an Tension cracks ‘«
enlargement of the stress release zone. It thus leads to a deCr grictional sliding A T
of the effective area in the direction of compression, as shown . ' (I [}
Fig. Bb. To take into account this 3D effect, a new damage var R 0y ¢ "
able has been defined, ' . 0 0 ot
(1_Di) when 0'i>0 or EiBO Stress release zones T
T (1-DA(1-D,)A(1-Dsy)? when ;<0 and <0’ t
27) (a). Micro-mechanical model (b). Stress release zones

where 8 is a model parameter related to the stress release zonerig. 5 Stress release zones under uniaxial compression
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1
* = —
¢ ZE{Ul o, o3} 0,=0, o
wIS/Z _ Vw;l/ng 12 Vw;l/Z(y;l/Z
=12 —1/2 —3/2 -1/2 —1/2
—vw, w, ;) TPy w3 - -0, Vo,
_ le—l/zw; 2 _ Vw£1/2w§1/2 w;s/z
f €
(o) (29)
os @ )
. . g,
It should be noted that the additional normal strain introduced
Eq. (25) and the 3D effect introduced in E7) are just assump- oy ) )
tions based on experimental observation and other research‘Reloading routine Reloading routine
work. They may lack rigorous mechanical basis and may tg Bq.4 from Eq.5
viewed as compromises between the rigorous mechanical analy Vo,
and the engineering application. Z
_vo, &
E ©

5 Evolution of Damage

Although “thermodynamics alone does not provide all the neg-ig. 6 Comparison of the damage deactivation criterion given
essary prerequisites for the formulation of a rational and succebg-Egs. (4) and (5)
ful continuum mode’3], it is still the most convenient tool avail-
able to deduce a damage evolution rule, especially when the
definition _of the damage has b(_ae_n given, e.g.,(28), and when 6 Summary and Discussion
the experimental results are still inadequate. ) ) )
As an irreversible process, the evolution of damage must satisfyln this paper, a displacement equivalence-based damage model
the second law of thermodynamics, which means that the dissip@t brittle materials is proposed based on the concept of effective

tion ¢» must not be negative, i.e., stress and virtual undamaged configuration. A new damage deac-
tivation criterion, which depends on both the stress and strain
¢=dp+ ¢pt rt---=0, (30) states of the materials, is adopted. According to the discussion

. - T given in Appendix A, the new criterion can lead to more reason-
‘é";‘ﬁg Lhz Solfbts.gﬂpt?é P{'Catndf[r 'nda'lﬁzt'“:etge ;gf'f:“%’:.gtl.’sntoraple results in some ideal cases under the basic assumptions stated
ge evolution, plasticity Tux, perature variation, ﬁ’bSec. 2.1. However, for the real engineering materials, the crite-
i

spectively. We assume that the 'd|5_5|p{:1t|on due to damage €ani8f is a conservative assessment of the ability of the material to
uncoupled from the other two dissipation forms as the other Wothstand loading

dissipations are not considered according to the basic assumptic_nn§he assumption of displacement equivalence between the dam-
[Sé%ﬂed n Ete(':' 2.1. Therefore, from continuum damage mecharg&%d configuration and the undamaged configuration is proposed.
we obtain It has been proven that the equivalence of displacengen-
b= —Y:D=0 31) metrical intuition also leads to the equivalence of work done by
b ' ’ stress(energy conservationHowever, the principle of equivalent

whereD is the rate of damage, andis the ratio of strain energy Strain does not consider the damage effect on Poisson’s ratio, and

density release, which is defined as the principle of equivalent strain energy does not consider the
geometrical change of the material. For example, it does not con-
de* sider the decrease of the effective volume.
Y=- D (32) Also, an additional crack-opening-induced normal deformation

is introduced to take into account the misfit of the crack face. The
where ¢* is the Gibbs free energy. According to Onsager relanicroscale mechanism of the 3D effect of the crack opening is

tions, Eq.(31) will always be satisfied if we choose also discussed and considered using the concept of stress release
. zones, from the macroscale viewpoint. The evolution rule of dam-
Di=—FiY;j, (33) age is deduced using the Onsager relations.
where the matri¥ is positively definitive. As indicated in Appen-
dix B, matrix F can be specified as Acknowledgments
F=diag{F;;,F 5, F3g3. (34) We would like to express our sincere gratitude to the reviewers

) ) for their invaluable comments and suggestions given to this paper.
So, Eq.(29) can serve as an evolution equation of the damage,

and, from Eqs(29), (32), and(33) we obtain Appendix A. Discussion on Damage Deactivation Crite-

i (9QD* - F” a6k|(D,O') rIOI’]
Di=Figp =% v p, - (35) in Fi i
j i The element shown in Figafis under a plane stress state. First,

increaseo, until o,=0, and keep it constarfessume that no
damage occurred in the proces$hen, increaser, under dis-
%’Iacement control until the remaining strength is smaller than
voy. Finally, unloado,. According to the basic assumptions

It should be pointed out that the evolution rule, E8@), can also
be derived by first specifying a dissipation function in the therm
dynamics space, i.e.,

b=3F. VY, (36) stated in Sec. 2.1, no permanent deformation will occur, as shown
Ut in Fig. 8b. Again, reloado,, and if we follow Eq.(4), D, will not
and then applying the relation in E€). be active untile,>0, that iso,>vo (as shown in Fig. ), and
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. . o modal parameters is presented. For verification, the proposed model is applied to con-
School of Civil & Environmental Engineering, crete under uniaxial and biaxial loading, and the numerical results are compared with
Nanyang Technological University, those of other researchers and with the experimental results. The results are generally in
Singapore, 639798 good agreement and the proposed model is considered worthy for further research

work. [DOI: 10.1115/1.1599915

1 Introduction o wI3/2 _ VwI 1/2&); 12 le—llzwg 1/2
In the preceding papefl] on theory, a displacement | ¢ | _ 1_ voy Py H? w, 3P — v, Puw;?

equivalence-based damage model for brittle materials is proposgd, E o o ap

A new damage deactivation criterion, which depends on both the 3 TVw; w3 TVwy w3 @3

stress and strain states of the materials, is adopted. Based on the

concept of effective stress, the virtual undamaged configurations 71 71

are introduced, and the assumption of the displacement equiva- x{ o210 =[S;]§ o2, 2

lence is proposed to correlate the damaged and virtual undamaged 03 o3

configurations. Then, an additional crack-opening-induced normal
deformation is introduced to take into account the misfit of crack
faces. The three-dimension@D) effect of these opened cracks iswhere S is the secant compliance matrix, aadis the damage
also considered. The evolution rule of damage is deduced usifyiable taking into account the 3D effect of the crack opening
the Onsager relations. under compressive loading, which is defined as

This paper focuses on the application of the proposed displace-
ment equivalence based damage model. The damage evolution _
rules are discussed in detail in Sec. 2 for the uniaxial and multi- [(1—Di) when o;=0 or =0
axial loading cases. The loading-unloading condition and the tam;= ~ ~ ~ .
gent modulus are also presented. The model parameters are dis- (1-D1)#(1-D5)#(1-Dy)? when ¢;<0 and <0
cussed in Sec. 3. In Sec. 4, the proposed model is applied to ®)
concrete under uniaxial and biaxial loading, and the results are
compared with those of the other researchers and with the p
lished experimental results. Finally, the limitation of the propos
model and the further work are discussed in Sec. 5.

l150 a rate-dependent evolution rule of damage is deduced using
the direct method:

&(p* F” (?fk|(D,(T)

2 Evolution of Damage D= F”W = S o5
In the preceding paper, the effective principal damage compo- J : 4)
nents are defined, as expressed in @g. to consider the activa-
tion and deactivation of damage in the principal damage coordi- Fa, wheni=j
nate system: Fy= O(H)When "

~ Di When O'(ii)>0 or e(ii)>0
D = . 1
: 0 when O-(ii)<0 and 6(“)<0 ( ) . i X .

) o ) . In this section, the rate-independent form of the damage evolution
Then the secant compliance matrix is derived, as expressed in kfle js embodied for the uniaxial and multiaxial loading cases,

(2), from the assumption of displacement equivalence and thespectively.

consideration of the additional normal strain and the 3D effect of

the crack opening: 2.1 Uniaxial Tension. In the case of unialdal tension,Nwith

- 0,>0, o,=03=0, from Eq.(1) we know thatD,=D;>0, D,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  — 53: 0, and from Eq(3) we know that

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decem-

ber 21, 2000; final revision, December 1, 2001. Associate Editor: J. W. Ju. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart- ®w1=(1-D;), wy=wz=1. (5)

ment of Mechanical and Environmental Engineering University of California—Santa

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months

after final publication of the paper itself in the ASMBURNAL OF APPLIED ME-

CHANICS. Substituting Eq(5) into Eq. (2), we obtain
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€1
€2
€3

Assuming thak, is kept constant when loading, we can obtain the

1 — —
5 v v analytical expression of the stress-strain relationship. Equédjon
V(1-Dy)® V(1-Dy) (1-Dy) can be rewritten as
o1
1 —
- Y 1 — 0. L o2
— . 1 —
(1-Dy) 0 dD, =Dydt= 7 ldelzatf(l—ol)% 25de,,

v —y 1 (10)

[ V@=Dy) - ©) where o, =3F ,/4¢, is a model parameter. Rewrite EJ.0) as

So, Eq.(4) becomes

(1-Dy) " %D, =aEeide, (11)
2
Dle—llak| 9€a(D,0) _3Fuoi (1-D,)"25 D,=D,=0. and integrate Eq(11) to obtain the relationship between damage
2 D4 4E and strain,
)
According to the experimental observation by Dong ef . it is —(0.5- y)~Y(1-D,) 05 W= %atEfi (12)

apparent that the ratio of the damage, will become very small

whenD—1. We can ensure this tendency by choodigto be  whereC, is an integration constant.

whereF

to depict the tendency of the strain, especially in the softening

Fy=F(1-Dy)", 8) 2.2 Uniaxial Compression. In the case of uniaxial com-
pression witho; = 0,=0, 03<0, from Eq.(1) we know thatD1

is a positive constant ang is a model parameter used D,=D,=D,=D>0, Ds=0, and from Eq/(3) we know that

phase. Thus, the damage evolution equation for uniaxial tension
can be written as 0;=(1-D))=w,=1-D,, w3=(1-D;)F(1-D,)~.

3F10’l (13)

- — Yi— 25
D1= (1=Dy™ ©) " Substituting Eq(13) into Eq. (2), we obtain

[ 1 —v —v T
V(1-Dy)® V(1-Dy)(1-Dyp) V(1-Dyt*#
€1 1 —v 1 —v 8 (14)
€ =—| /—m—m— ™ @ — e — - .
€3 E| V(1-D1)(1-Dy) V(1-Dy)® V(1-Dp)*?F os
—v -V 1
JA-DpT#  J(1-DpT%*  (1-Dy*F(1-D,)*|
I
From Eq.(14), we derive 2.3 Multiaxial Loading. For the multi-axial loading case, it
is assumed that the damage evolution equation can be expressed
3E 802 using the model parameters introduced for the uniaxial loading
D :EU Jen(D1,D,,0) _ Bas (1-D)~3-1 cases. Therefore, the damage evolution equation is deduced from
R 9D, 4E Egs.(4), (8), (10), (16), and(17) as
=D,=D, D;=0. (15)
€j
We can also choose the positive functiéras db;= 2 3 9joj(1-D)” ' dE] 19
F=F'(1-D)7 (16)

Here, the model parametetg and y; are eithere; or «, and

Assuming thate; is kept constant when loading, E@.5) can be either y, or v, respectively, depending on eithet>0 or o,

rewritten

where .=

as <0. de;/9D; can be deduced from the constitutive equat@as
(1-D)* 3 7dD=— aBE€3des, an o _ EE - §w_5/2a 5
D; E&| 271 4D;
3F'l4e5 is also a model parameter. Integrating Eq.
(17), we can derive the relationship between damage and strain as v Jow;
4 — w73/2wk71/2 w*l/Zwkf?»/Z (1 5k]) ok,

2 dD;

—(2-3B—7) M(1-D)* ¥ Ye=—ja,BEe], (18) (20)
is an integration constant. where §y; is the Kroneker symbol and

whereC,

Journal of Applied Mechanics SEPTEMBER 2003, Vol. 70 / 689



—Bwi(1-Dj)"' when (i#j) and (o;>0 or >0) and (5;<0 and <0)
={ —1 when(i=j) and (o;>0 or ¢>0) (21)
0 when all others.

(9(!);
JD;

2.4 Loading-Unloading Condition. It is apparent from the 3 Determination of Model Parameters

domage Suouion eualons for e uria, loadng S858, LE-There e seven model parameters in €85 (12, and(19)
as. ' P namely,B, oy, a¢, Vi, ve, Ci, @andC.. C, andC, are used to

loading-unloading condition using the tensile strain. Hence, f . . .
uniaxial tension, the loading-unloading condition can be e lescribe the thresholds of damage. When the tensile cstr_aln Just
reaches the thresholds of damage, it is assumed te;, bén

pressed as o . X o X .
uniaxial tension and" in uniaxial compression. Setting,=0
Eg. (10) when e;=maxef’, e} andD =0 in Egs.(12) and(18), respectively, we can obtain
= 22
Y10 when e;<maxe,el™ (22) ) )
er L . Ci=(3— Yt)_l+§atE(€tcr)3: (29)
wheree;" is the damage threshold under uniaxial tension, &ifd
is the maximum tensile strain in the whole loading history. For 11 o) 3
uniaxial compression, it can be expressed as Ce=(2-3B— ) "~ 3acPE(— €. /v)". (30)
_[Ea. (17)  when e;=maxe e} It is also apparent from Eqé12) and(18) that it is y, and y, that
Y10 when e;<maxel’, el ' (23)  determine the tendency of the strain while damage increases. For

example in Eq(12), €,—«, whenD;—1 if y,>0.5; and if y,

where €' is the damage threshold under uniaxial compressior,0.5, €; is limited whenD;—1. So in practice;y; and y. are

and eI is the maximum lateral tensile strain in the loading hisused to describe the behavior of concrete in the softening phase.

tory. The damage thresholel" and¢S", will be discussed in the When uniaxial compression is applied, the ratio of the lateral
next section. strain to the normal one is

For the multiaxial loading case, the loading-unloading condi-

tion can also be written by combining those under axial loading. € € 12-25_
To do this, we rewrite Eq(19) as € € (1-D) R (31)
3
dDiZE dD!, (24a) We notice that if3<0.25, the Poisson ratio under uniaxial com-
= pression,y., will increase when the damade develops; thusp

can be used to consider the dilatancy effegt, ., C, andC,
are used to fit the performance parameters of material. From Egs.
(6) and (12), we can derive the damage value when the material

dDi:—aJ'O'j(l—Di)ylﬁdEj, (24b)
| . . . .
reaches its maximum tensile streng8ee Appendix Bas

3

wheredD! is the increment of damage due to stressand thus

1/(0.5—
4.&[ ( 7

o Eq. (24b) when eg=maxe’", e
4.50.5-y) 1+1

(32

- . (29) bi=t
0 when g<maxe’’, "™}

whereef" is ;" wheno;>0, or e’ wheno;<0, ande"™is the When the material reaches its maximum compressive strength, the

maximum tensile strair; in the loading history. The evolution damage will be

equation in this section can also be deduced using the nonassoci-

ated method, as shown in Appendix A. U2-3B8- ;)

98C,
9B(2-3B—y,) *+1

D*_

(33)

2.5 Tangent Modulus. The tangent modulus is useful for
the numerical analysis. From E(), one can obtain

Jde The expressions of the uniaxial tension and compression strength
de=—5dD+Sdo, (26)  and the corresponding strain§, ( f., &, ande;) can thus be
obtained from Eq(2):
Where dE:{dGJ_ d62 dfg}T, dO':{dO'Z d0'2 d0'3}T, dD

={dD, dD,dDg}", and the matrix de; /dD;] is given in Eq. 3 (05—, |*®
(20). Rewrite Eq.(24) as €| mE 5oy O (34)
dD:[Aij]'dE, (27a)
; f.=Ee(1—-D%)%? (35)
€
Aij=%aja'j(l—Di)yi—J. (27b)
&Di 3 2— 3,8— Ye 1/3
From Eqgs.(26) and(27), the tangent modulus can be derived as €™ | @ BE 2+ 68— v, } ’ (36)
Je
do= s*l( I--5 ‘A) -de, (28) fo=Ee(1—D*)3%. (37)
wherel is the unit identity matrix. Therefore, the constants , «., C;, andC, can be resolved as
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Table 1 Material parameters of the six grades of concrete 3E2 0.5 ’ . 4.5C, 9U(1-2y) »
No. E(GPa) v f.(MPa) €c f, (MPa) & *= 2 5—% |4505-y) +1 - (39)
1 17.2 0.2 40.0 0.0029 4.14 0.00045
2 21.4 0.2 50.3 0.0030 5.24 0.00045
3 276 02 73.8 0.0036  7.59  0.00054 1]( f |23k v
4 40.7 0.16 47.23  0.0019 3.10 0.00012 Ce=|(2-3B—y) *+ — , (40)
5 60.0  0.15 71.09  0.0022 3.96  0.00016 98|\ Eec
6 64.1 0.15 107.29 0.0020 5.63 0.00021

3E22-38—y 98C PH2=3p=7)
[ Cc
=
¢ 32468~y |9B(2-3B—y,) t+1
(41)
2 ft \ (1=2y)/3 ) . . . L
Ci=|(0.5-y) *+ || =— , (38) With these formulas, the stress-strain relationships under uniaxial
9/\Ee tension and compression can then be written as
|
E(1-Dy)¥e=Eei(3- 1)(Ci— 3 Ee) P72 when e,> ¢ “2)
01~
Ee; when e; <€’
and
E(1-D)¥e3=Eesl (236 7o) (Cot 3 aBEE) P77 when €,> € “3)
0O3=
Ees when e;<ef
I
4 Numerical Examples 4.1 Stress-Strain Response of Concrete Under Uniaxial

. . . oading. The six grades of concrete used by Fonseka and Kra-
As a preliminary study, the proposed model is applied to cor.lT-. . : : .
crete under uniaxial and biaxial loading, and the numerical resu“flnowc [3] and Il'_l agc.] A_‘Psbz?r[i] _?_Le con5|dereq. The matebrla! d
are compared with those of the other researchers and with ) rameters are listed in Table 1. The stress-strain curves obtaine
experimental results published by Fonseka and Krajcin@fid_i are compared with the]r gxperlmental results as deplcted' in Figs.
and Ansari[4], Dong and Xie[5], and Tasuji et al[6] 1-4. The curves depicting stress versus Poisson’s ratio under

—0, (N / m? )
BOEH7
705407
(i =hrg
S0E407
40E47
Rl =4
2007
108407
QEHD Q0D
h — Proposed model Q006 Q004 o0 0 aoe o il )
----- Fonseka and Krajcinovic [1981] €
Proposed model
QOEHD
Q002 0 Qoo Qo004 00006 Q008 My Qoo oQo4 - -~- Fonseka and Krajcinovic [1981]
£ -4+ Experiment referred by Fonseka and Krajcinovic [1981]
Fig. 1 Stress-strain response of concrete under uniaxial ten- Fig. 2 Stress-strain response of concrete under uniaxial com-
sion pression
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GI(N/”‘Z) -as/f.
6055 12
Proposed model

J4-F Experiment [Li and Ansari 1999)]
+4-

08

Qs

04f iH

02 —— Proposed model
i - -~ Fonseka and Krajcinovic [1981]
4 -+ Experiment [Dong and Xie 1996]
0
QoS5 [} a2 04 06 a8 1
€ v
Fig. 3 Stress-strain response of high-strength concrete under Fig. 5 Stress—Poisson’s ratio response of concrete under
uniaxial tension uniaxial compression

Re additional normal strain caused by the crack opening, as given
Eq. (25), in the preceding paper on theory. Figures 3 and 4
ow the application of the proposed model on high-strength con-
gte, and the results seem comparable with the experimental data.

uniaxial compression are also compared, in Fig. 5, with the wol
of Fonseka and Krajcinovic and a typical experimental resultg_I
Dong and Xig[5]. Figure 6 compares the volume-strain respon
of concrete under uniaxial compression obtained by Fonseka 4
Krajcinovic [3] with that obtained by the proposed model. 4.2 Stress-Strain Response of Concrete Under Biaxial
Figure 1 indicates that under uniaxial tension, the propos@ading. The stress-strain response of concrete under biaxial
model leads to a decrease of the lateral strain after the peak. Tjgigqing, for which the experimental data are available in FGif.
implies that unloading occurs in the lateral direction while loading; a1so considered. The numerical and experimental results are
progressed in the normal direction. Figures 2, 5, and 6 all shgqmpared in Figs. 7-9. Figure 10 shows the predicted biaxial
that the proposed model leads to more reasonable lateral strajjgnate strength envelope.
and volume strains under uniaxial compression than the other regjgyre 7 shows that under biaxial compression, the numerical
searchers’ results, as compared with the experimental observ@st is comparable with the experimental results. However, Fig.
tions. This is attributed to the fact that we have taken into accoufitshows that the numerical-analysis-produced ultimate strengths

-o,(N/m?) —o, (N/mm?)
1262408 80E07
Proposed model ) o,
4-8-8 . . . ’ ¢
AR 4 -a-4 Experiment [Li and Ansari 1999] TCEQ7
10648 S AR l:]
’ (=
/ ! GOE07 T
‘ r’;
B0E07 A
i ] e
=g ,' i ACEN7
F Ty
"a
8- 3067
I Ty
4T “
PR
RN oo, 20807
AW Al
P ‘-'
A NS
206407 AN i
Nt T & 106407 { ———Proposed model
“hod-h A
““3: . __ _Fonseka and
Krajcinovic [1981]
QED R+ QCEHD
0 aoe a4 0006 Q008 0o -0 Q00! o 0001 Sm
—g, iy
Fig. 4 Stress-strain response of high-strength concrete under Fig. 6 Volume strain response of concrete under uniaxial
uniaxial compression compression

692 / Vol. 70, SEPTEMBER 2003 Transactions of the ASME



4.0E+06
= _sde=l
ACEHT 3.5E+086 ;A ————————— [T,
°°o° U £
ASENT 3.0E+06 oo [
30507 2.5E+06]
2647 2.0E+06
268407 1.5E+06-
e 1.0E+06
il
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-¢ 0 %8 Eyperiment
0 -+4&-  Experiment S2 _05 -aaa [Tasujietal 1978] — Proposed model
9%2_05 -aa=a [Tasujietal 1978] Proposed model Ol 1 eae.
Gy . . L
- 1 —coo- - o Fig. 9 Stress-strain response of concrete under biaxial
Fig. 7 Stress-strain response of concrete under biaxial tension

compression

are smaller than that of the experiment under biaxial compressidietween the two curves. This postulation is illustrated in Fig. 8 by
tension. This may be attributed to the fact that in the experimersess; /o3=—0.25 ando, /o3= —0.05. In the former case the
friction exists on the surfaces under compression of the concretiéect of friction is smaller than that in the latter case, thus having
specimen. This friction will have a restraining effect on the tera better agreement with the experimental result. Figure 9 shows
sion failure in the direction ofr;. That is to say, the specimen isthat the numerical results under biaxial tension agree well with the
in fact not under perfect compression-tension loading, while ideekperimental curves, except for the caserefo,=1, where the
compression-tension loading is assumed in numerical simulatian~ o, curves differ even during the elastic phase. The predicted
and this effect of friction is not considered. Thug will have a biaxial ultimate strength envelope is shown in Fig. 10, and it also
larger effect on the tension failure, which caused the differenegrees with those reported by the other researditer8].

—0Cy (N/mz) /f
g
3.0E+07 ylJe
[ o 0
%0, o “%2  ¢,/5,=-005 0’ 5’
2.5E+07 ° c./f.
44 0 [¢73
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0.001 -0.0005 0 0.0005 0.001 0.0015 0.002
—&
—0259-88  Experiment
S1_ 01 -~a=a [Tasujietal 1978] Proposed model 4
%1 005 -cao.
Fig. 8 Stress-strain response of concrete under biaxial com- Fig. 10 The predicted biaxial ultimate strength envelope of
pression tension concrete
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i 3
5 Conclusions Je

3
. ) ‘ .

This paper focuses on the application of the displacement dDi=Zl dD{:Zl 3“1(1_Di)y“713_|3]_d)‘{- (AS)
equivalence-based damage model for brittle materials proposed in = = '
the preceding paper on thedry]. The evolution rule of damage Equation(A5) is are the same as E5), as long as we set the
derived in the preceding paper using Onsager relations is applidainage consistency parameters to be
to the cases of uniaxial and multiaxial loading. The loading- o ma
unloading condition is discussed and the tangent modulus is de- dni— dej|  when e=max ", "™
rived. The determination of the model parameters is then pre- i
sented. The proposed model is applied to concrete under uniaxial
and biaxial loading, and the numerical results are compared withd reverse the sign af; , whende;<0.
those of other researchers and with the published experimental
results. The results are generally in good agreement and the pro-
posed model is considered to be worthy of further investigation . . . .

However, the proposed model has been simplified because {ngendlx B: Damage Value Corresponding to Tensile
material has been assumed to be totally brittle. This implies th@fd Compressive Strength
there is only elastic damage, which leads to the degradation of théror the case of uniaxial tension, from E@8) and(12), we can
mechanical behaviors of the material, and no plasticity will occybtain
in the material. Therefore it would be difficult to predict the re- 3E?
sponse of brittle material under triaxial compression in which the 3 - 5 ]
plastic behavior is apparent, according to the experimental obser- Ul_T[C‘_(O'S_ 7 H(1-Dy*T(1-Dy* (BY)
vation given in Ref[4]. So in future work, coupling between the

= A6
0 when g<maxef", "™ (A6)

damage and plasticitfalso under the assumption of displacement dai 2 a5 .
equivalencg should be considered. D, a (1-Dy)*[4.50.5-y) ~+1]
In addition, another limitation of the proposed model is that the
principal axis of damage should coincide with those of the stress X(1-D)¥m—4.5C). (B2)

and strain. To solve this problem, one could consider the shear
stress and shear strain in the coordinate system of principal darr-
age[9]. An alternative approach is to adopt the idea of rotating
cracks in the smear crack model0], i.e., to define a special D;=1—
damage evolution rule to force the principal axes of damage to

coincide with those of the stress and strain.

whenD;=1 or

1/(0.5—~
4-mt ( ")

4505 y) t+1

o3 can reach its extreme valu@, =1 represents a trivial solution
and thus is discarded.
Acknowledgments I_:or_ the case of uniaxial compression, similar to the case o
i ] ) ~ uniaxial tension, from Eq914) and(18), we can obtain
We would like to express our sincere gratitude to the reviewers

for their invaluable comments and suggestions given to this paper. —3E? _ 35—
goestions g = g [Com (2736 %) H(1-D)* ¥ (1-D)*,

. . . (B3)
Appendix A: Derivation of Damage Evolution Rule Us- do? ag?
i i g3  — _ _
ing the Nonassociated Method = ap (1-D)% [ —9BC.+98(2—3B— v,
First, decompose the ratio of strain energy density release
) X(1=D1)2 38 Yt (1—D)2 3B~ %
bo i & (1-Dy) (1-D) 1, (B4)
'"oD, D, A~ ME So whenD=1 or
) 1U(2-38- )
=28, 0 tion forj Al D=1- 9AC. ’
‘_a_Di_Uja_Di (no summation forj). (A1) 9B(2—3B— 7y 141 )

Then, introduce the nine flux potentials of damag{fé,Y.D), i ag can reach its extreme valub.= 1 represents a trivial solution

=1,23: and is also discarded.
g/(Y,D)=3a;(1-D)M(Y)?2, (A2)

According to the normal flux rule, the increment of damage can igeferences
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Stroh-Like Complex Variable
Formalism for the Bending Theory
of Anisotropic Plates

Based upon the knowledge of the Stroh formalism and the Lekhnitskii formalism for
two-dimensional anisotropic elasticity as well as the complex variable formalism devel-
oped by Lekhnitskii for plate bending problems, in this paper a Stroh-like formalism for
C. Hwu the bending theory of anisotropic plates is established. The key feature that makes the
Institute of Aeronautics and Astronautics, Stroh formalism more attractive than the Lekhnitskii formalism is that the former pos-
National Cheng Kung University, sesses the eigenrelation that relates the eigenmodes of stress functions and displacements
Tainan, Taiwan, Republic of China to the material properties. To retain this special feature, the associated eigenrelation and
orthogonality relation have also been obtained for the present formalism. By intentional
rearrangement, this new formalism and its associated relations look almost the same as
those for the two-dimensional problems. Therefore, almost all the techniques developed
for the two-dimensional problems can now be applied to the plate bending problems.
Thus, many unsolved plate bending problems can now be solved if their corresponding
two-dimensional problems have been solved successfully. To illustrate this benefit, two
simple examples are shown in this paper. They are anisotropic plates containing elliptic
holes or inclusions subjected to out-of-plane bending moments. The results are simple,
exact and general. Note that the anisotropic plates treated in this paper consider only the
homogeneous anisotropic plates. If a composite laminate is considered, it should be a
symmetric laminate to avoid the coupling between stretching and bending behaviors.
[DOI: 10.1115/1.16004 74

1 Introduction formalisms with the Stroh formalism comes from the eigenrela-

For two-dimensional linear anisotropic elasticity, there are wien: which play_s an important r_ole for the Stroh formalism and
major complex variable formalisms in the literature. One is th&ill Pecome a vital drawback if it cannot perfectly match that of

Lekhnitskii formalism[1,2], which starts with the equilibrated the Stroh formalism. )

stress functions followed by constitutive laws, strain-displacementBecause the analogy between the in-plane problems and the
relations, and compatibility equations; the other is the Stroh foplate bending problems has been observed long time ago, e.g., in
malism[3,4], which starts with the compatible displacements folRef. [24], in this paper we turn back to the simple pure bending
lowed by strain-displacement relations, constitutive laws, argioblems and try to develop a fully Stroh-like formalism in order
equilibrium equations. A special feature of the Stroh formalisio borrow all the techniques developed for the two-dimensional
possesses an eigenrelation that relates the eigenmodes of sgsesisliems. By carefully reviewing Lekhnitskii formalism for both
functions and displacements to the material properties. Recerti¢ two-dimensional and plate bending problems and catching the
the Stroh formalism becomes more attractive than the Lekhnitskjbirit of Stroh formalism for two-dimensional problems, we de-
formalism, especially when Tind] emphasized the Stroh formal-yelop a Stroh-like formalism for the bending theory of anisotropic
ism. In order to get benefits from both formalisms, there are algpates. Moreover, the explicit expressions of the material eigen-
some works discussing the relations between these two formgliors and fundamental matrix are also obtained in this paper.
isms, e.g., Refd6-11]. Again, it should be emphasized that this first attempt is valid only

Besides the two-dimensional problems, around 60 years homogeneous anisotropic plates which can be applied to the
Lekhnitskii also developed a complex variable formalism for the . . . .
mmetric laminates not the general composite laminates. Better

late bending problerd.2]. After that, some researchers devoted” . . . .
fheir efforts ?opthe dgelgpment ané application of the compl%aﬂ those general formalisms developed in the literature, this new

variable method on the laminates with the bending extension cd@rmalism looks very like the Stroh formalism for two-
pling such as Refs[13—-20. In addition, the extension of the dlmen5|on.al linear .anlsotroplc elasticity. Hence, leost all the
Stroh formalism to the coupled stretching-bending analysis of tieathematical techniques developed for two-dimensional problems
composite laminates has been attempted bya1]}, enhanced by can lend to the plate bending problems. By simple analogy, many
Lu and Mahrenholtf22] and modified by Cheng and Redf®8].  problems that cannot be solved previously now have the possibil-
Although there exist several different formalisms, due to the cority to be solved even without a detailed derivation if their coun-
plexity, the resemblance between these formalisms and the Sttetparts in two-dimensional problems have been solved.
formalism is not perfect enough to employ most of the key fea- Due to the success of the present formalism for the pure bend-
tures of the Stroh formalism. The main difference of the existinigig analysis, we have gone further to study how to improve the
complex variable formalism for the coupled stretching-bending
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF analysis in order to achieve a fuIIy Stroh-like formalism. By com-
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . he diff f th f i ith th
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. zparing t_ e a e_rence of the present formalism with those pre-
2002; final revision, Oct. 7, 2002. Associate Editor: J. R. Barber. Discussion on tseénted in the literature such as Lu and Mahrenhf2| and

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen@heng and ReddﬁQ:S] we have found an alternative approach for
Mechanical and Environmental Engineering University of California—Santa Barbarré lobi th ’ Stroh-like f I f th led
Santa Barbara, CA 93106-5070, and will be accepted until four months after fi ?Ve oping € more ron-like tormalism for € couple

publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. stretching-bending analysis of general composite lamir&&ls
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2 Classical Bending Theory of Anisotropic Plates Disregardingo, and assuming that the anisotropk_: materials
In order to have a complete picture of the new formalism déj_ave one plane of elastic symmetry located at the middle surface

- ) . : f the plate(or say, the material is monoclinic not the most gen-
velopeq n .th's paper, thg cla_ssmal l_:)endlng theory O.f anlsotropg?al anisotropif the stress-strain relationship of the anisotropic
plates is briefly reviewed in this secti$®6,27). In classical plate

theory, the following assumptions, generally knownkashhoff materials may then be separated into the following two parts:

hypothesesare usually madg28]: (a) the material of the plate is - 611 (“;12 éle .

elastic, homogeneous and isotropib) the plate is initially flat; x - . - x

(c) the thickness of the plate is small compared to its other dimen- oy r=|Ciz Co Co|§ &y [,

sions; (d) the deflections are small compared to the plate thick- Tyy & & ¢ Yxy

ness;(e) the slopes of the deflected middle surface are small com- 16 ~26 66

_pz_ar_ed to unity;(f) the de_formations are such that _straight lines, - {;44 (“345 y

initially normal to the middle surface, remain straight lines and S el (4a)
normal to the middle surface, i.e., the deformations due to trans- Txz Cus Cos)l Vxz

verse shear will be ngg_lecte@) the stresses normal to the r_niddleOr in matrix notation
surface are of a negligible order of magnitude. For an anisotropic R R

plate, all these assumptions remain valid except that the material o=Ce, 0,=C;s. (4b)
of the plate is anisotropic instead of isotropic. Based upon these -

assumptions, the plate displacemants, andw in thex, y, andz  In Eq. (4), C;; is the reduced elastic stiffness defined as

directions can be expressed as

&—c— 3% e i—12456 )
5W(X,y) |J_ i C33 - jis :J_ 1y Ty
U(vayz):Uo(X,Y)_Z ’ . . . . . .
X whereC;; is the elastic stiffness of the materials, which is also a

contracted notation of the fourth-order elastic tenSgy; . In en-
Q) gineering applications, one always likes to express the elastic
' stiffness in terms of engineering constants such as Young’s moduli
E, Poisson’s ratiosy, and shear modulG. These constants are
wW(X,y,z) =Wo(X,Y), usually measured in simple tests such as uniaxial tension or pure
shear tests, which are all performed with a known load or stress.

whereug, vg, andw, are, respectively, the middle surface dis- . ) .
placements in the, y, andz directions. If small deformations are Thus, the components of the compllance maSighe inverse of

. . leforn o L .
considered, the strains of the plates can be written in terms of ¢ reduced elastic stiffness matrx”") relating stresses and

IW(X,y)

U(vavz)=v0(xvy)_z (9y

middle surface displacements as follows: strains ase=So are determined more directly than those of the
stiffness matrix. For a general anisotropic material, the compli-
au  duy  Pw ance matrix components in terms of the engineering constants are
= —= —72—’
EXTax T ox Ix2 [ 1 —va Mg
2 El E2 GlZ
Jv (900 W (2 ) 1
Sy:(?—:——z—, a, A | Tha2 72,12
y oy ay? s=C!= = = | 6
y £ E Gn ©
- Jv Uy v 9w 1
yxy:_+_:_0+—o—22 , ey ez -
ay Ix 9y X IXady L E; E, Gy |
or, in matrix notation, whereE; andE, are the Young’s moduli in th&, andx, direc-
tions, respectivelyy;; is Poisson’s ratio for transverse strain in the
e=gp+ 7K, (2b)  x; direction when stressed in thg direction, that is, v;

. . . =—¢;lg; for oj=0 and all other stresses are zefdj, is the
wheree, g,, andk denote, respectively, the strain vector, midsurzy, ../} ! ! 12

¢ irai ¢ d olat t " hich defi dshear modulus in the,x, plane;»; ;; is the coefficient of mutual
ace strain vector, and piate curvature vector, which are aelinedigfy ence of the first kind that characterizes stretching inxhe

direction caused by shear in thex; plane, that is; j;=¢€;/v;

B for 7;;= 7 and all other stresses are zerg;; is the coefficient of

£=1 8y [, (33 mutual influence of the second kind that characterizes shearing in
Ixy thex;x; plane caused by a normal stress in theirection, that is,

7ij,i= vij /i for oy=0, and all other stresses are zero. It is also

% known that the compliancéor stiffnes$ matrix is symmetric.
o X Thus,S;=S;;, or
£y p j i
1%
0= aé,’ = (9—y° , (3b) Ya_ Vie  Mite_ M2y etz M2z @
Yxy Uy g E: E Gz Es G2 Ez
WJF X Note that the inverse of the elastic compliance maSixis the
reduced elastic stiffness matitk; instead of the elastic stiffness
[ 2w ) matrix C;; .
— Substituting Eq{(2b) into the stress-strain relatidfirst equa-
« (2 tion in (4b)], the stresses in the plates can also be written in terms
X 9*w 3 of the middle surface straing, and plate curvatures as
= K = — _ )
<1 v (30) N
) Jw oyt =0=C(gy+2K). 8)
L axﬁy) Txy
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- E,h® o E,h®
e 12(1—-wvypvp) 2 12(1—-viov50)

V12E2h3
D=7, 12
121 vipvp) (12)
Glzh?’
66=_12 , D1g=D2=0.
In the case of an isotropic plate, we have
dx
D D Di,+2D En° D
1= VP2=Vi2 [ e ——

12(1— 2

(1—v°) (13)
1-v
D12: VD, DGGZ_D, D16:D26:O.

) — 2

With the displacement fields, strain-displacement relations and
constitutive laws given in Eq<1), (2), and(10) [or Egs.(4) or
(8)], to complete the structural analysis we need plate equilibrium
equations. Since the equilibrium equations concern only the bal-
ance of forces acting upon the structures, it should be independent
of the material types. For thin plates they are often developed by
integration of the usual equilibrium equations of elasticity with
respect to the coordinatein thickness direction. By neglecting
the body forces and the tractions on the top and bottom surfaces of
the plate except the lateral loaf(x,y), the force and moment

FyidF,

Fig. 1 Plate geometry, resultant forces, and moments equilibrium equations of the plate can then be derived as
J J
§X+%+q:o, (140)
Since the thickness of the plate is considered to be small com- y
pared to its other dimensions, in classical plate theory an integral oM. oM
equivalent system of forces and moments acting on the plate cross Xy 0 Q,=0, (1)
section is used instead of spreading the stress distribution across 2 ay
the plate thickness. By integration of the stresses through the plate
thickness, the resultant forcBsand moment$/ acting on a plate My N M Y_0,-0 (14)
cross section are defined as folloWsg. 1): ox ay o
Fx hi2 | Ox h/2 whereQ, andQ, are the transverse shear forces definedras
F: Fy :f o-y dZ:f O'dz, 1)
Fy —hi2| 7, —h/2
9
M ® Q[ el 15
X h2 | Ox hi2 Q= Q) =) 1l 7y Z (15)
M=¢ My =f ay zdz:J oz dz, ~hiz
My B e Substitution of Egs(14b) and (14c) into Eq. (14a) will further

whereh is the thickness of the plate. Substituting E8).into (9), ead the force equilibrium equation in tizedirection to
the resultant forceB and moment$/ can be written in terms of

the middle surface strains, and plate curvatures as PMy My, M
N > 7 Y 2y+q=o. (16)
F=hCsg,, (10a) 28 Xdy ay
M =Dk, (10b)  With the moment-curvature relatidOb), the definition of curva-
) ) ) ) ) N ture vector(3c), and the equilibrium equationd4b) and (14c),
whereD is the bending stiffness matrix that is relatedGdy the moments and transverse shear forces can be expressed in
h3 . terms of the lateral deflection as
D=—C. (11)
12 9w 52w a?w
The results of Eq(10) show that no coupling exists between the My=— Dll_ﬁxz +D12_(9 5 +2D16_axay ,
bending and extension of a plate, which is obviously due to the y
assumption of symmetry with respect to the middle surface of the ) 5 5
plate. Hence, in the classical plate theory the bending problems Mo=—| D Jw +D Jw +9D au (173)
are usually discussed separately with the in-plane problems. In the y Poxz P gy2 2oxay |’

following we will then disregard the extensional forces and their

associated deformations. When the plate is orthotropic and the 2 2 2

; . L . o - : W ) 1%
directions ofx andy axes coincide with the principal directions of Myy=—| Dig—= +Dyg + 66—) ,
elasticity, according to Eq$6) and(11) we have Y G ay? axady
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2w PBw Pw M,=sir? M, +cos’ 6M,—2 sind cosoM,,,  (22b)
—|Dy—=+3D +(D1y+2Dgg) ——
R Hox3 ox2ay (D12 %% axay? M= sin @ cosg(M,—M,) + (cog 6—sir? §)M,,,
. (?SW} | Qn=C0s6Q,+sin 0Q, , (220)
ay (17) Qi= —sin #Q,+coshQ, .
Pw PBw Pw Among all the possible boundary conditions, the commonly used
Qy=- D15—3+(D12+ 2Dgp) > +3D g 5 conditions such as simply supported, clamped, free, loaded, pre-
IX 2909% Ixady displaced and elastic supported edge boundary conditions can then
3 be expressed as
J°w
D22§—y3}- simply supported edge: w=0, M,=0; (23)
Substituting Eq(17a) into (16), the equilibrium equation can also clamped edge: w=0, w -0: 23)
be expressed in terms of the lateral deflection as an
o*w a*w 9w a*w free edge: V,=0, M,=0; 2%)
Dy—+4Dg—=—+2(D,+2Dgg) ——— +4Dos——
x4 Cox3ay 2 % gx2ay? oaxay® loaded edge: V,=p, M,=m; (23d)
04W H . —\W* ﬁW — k.
+Dy—=q. (18) predisplaced edge: w=w*, onoan (23¢)

ay*

Equation(18) is the governing differential equation for deflec-
tion of anisotropic thin plates. To determimethrough this equa-
tion, appropriate boundary conditions of the considered problems
should be set properly. For a fourth-order differential equatio, | ekhnitskii’'s Complex Variable Formalism
only two boundary conditions are required at each edge. Thes . . . . .
may be a given deflection and slope, or force and moment, t%reo solve the governing differential equati¢b8) together with

some combinations. Mathematically, they can be written as boundary condition$23) for deflection of anisotropic thin
plate, Lekhnitskii[2] rewrote Eq.(18) symbolically with the use

aw
elastic supported edge:V,=k,w, Mn=km0—n. (23f)

ow - Iw* W of four linear differential operators of the first order:
—= or M,=M} or M,=k,—,
an an an d1d2d3d4W:q. (243)
and (19) d, (k=1,2,3,4) designates the operation
w=w* or V,=V; or V,=k,w, d d
. . ) K=y Mgy (240)
where V,, is the well knownKirchhoff force of classical plate Yy X
theory, or called theffective transverse shear fordefined by  \yhere i are the roots of the characteristics equation
M 4 3 2 _
Vn:Qn+Tm- (20) Do *+4Dpgu®+2(D 1yt 2Dge) u+4D g+ Dy 0.(240)

The subscripts andt denote, respectively, the directions normalt has been prove@12] that Eq.(24c) has no real roots for any
and tangent to the boundary. The asterisk denotes the prescribtastic homogeneous material. Since the coefficients of the fourth-
value.k,, andk, are given spring constants. With the definitiororder equation foru are real, there are two pairs of complex
given in Eq.(20) and the expressior{47), we can also express theconjugates fow. If we let

effective transverse shear force in terms of the lateral deflection as

|m ILLk>0, Mk+2:Ek, k:1,2 (25)
V= Q.+ ﬂMxyz _Ip 7w +4D F*w and assume that are distinct, the general solution for deflection
XTRXT gy 3 16,2 ay w can be expressed §3]
Aw Aw W=Wqy+2 REW1(21) +Wy(2,)}, (269)
+ (D12t 4Dge) P +2D26F : where Re and Im stand for the real and imaginary parts, respec-
y y (21) tively, and the overbar denotes the complex conjugaigjs a
M Bw Pw particular solution of Eq(18) whose form depends on the load
V,=Q,+ Y _ 2D +(D1p+4Dgg) —— distributionq on a plate surfacey,(z;) andw,(z,) are arbitrary
y y IX 3 66 2 . . :
IX IX°ay analytical functions of complex variables
Pw Pw z;=x+p1y and =X+ puy. (260)

+4D,g—— +Dor—r
2eax§y2 22(9y3

On the basis of Eq417) and(21), general expressions for the

L moments and shear forces can be obtainedf@sthe case
If 6denotes the angle between the normahdx axis (Fig. 1), d 1

; - # 2]
the values in the-t coordinate can be calculated from the values r2) [2]
in the x-y coordinate according to the following transformation MX=M2—2 Re 1101W7(Z1) + 129oW5(25) }, (27a)
laws:
My=My—2 Re(hyw(z;) +how3(2,)}, (270)
ow oW W .
an ~C0sO oL Fsind oo, (222) Muy=M3y—2 Rerwi(z;) +rows(z0)},  (270)

M= cog M, +sir? 6M ,+2 sing cosoM,y, Qx=Q7—2 R i18;WY'(2;) + uoSW5 (25)},  (27d)
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Q,=Q%+2 R ;W (2) +S,WY (25)}, 27¢) =d¢;, for two-dimensional problems, a very simple relatign
o Ao (2) + 521z (2)} (2%) =dd¢; /s has been found. This simple relation is very helpful for

V,=Vo+2 Rehy W/ (z1) + houiwy (2,)}, (27f)  the description of traction conditions especially along the curved
o ” ” boundaries. Therefore, we now try to express the loaded boundary
Vy=Vy+2 Re[g1WY (1) +0aW5 (25)}- (279)  conditions by modifying the concept of traction boundary condi-

tions used in two-dimension&2D) elasticity.

Here MY, ... .QF, ...,V are the moments, transverse forces, ; 1 o

and effective transverse forces corresponding to the particular %%-E ﬂ;?e”r%mg d”;%ncé)iggﬁ&tzog)z[t)hgl?j:é(:tgr%n?ng?nn:r'gz”r&%ig]e
lution of deflectionwg, which can be found by the relations given . . f the ol h o Edsa b &4

in Egs.(17) and(21). The prime denotes differentiation with re-"um equations of the plate shown in E¢#4) can be rewritten as

spect to the function argument. The coefficientgy,hy,ry, sk, 82(2Mxy—ny—H§y) M, dHyy
k=1,2, are defined as oxay =0, ™ + Y =0,
31a)
Dy (
Ok=——+D i+ 2D 15, M= Do+ Do+ 2D ey, dHy, oM,
Mk 28 + —=0,
, (28) x| ay
re=DigtD +2D ,
k= PaeT Yastk 66Mk where
Dll 2 *
sx=——+3D g+ (Dp+2D +D , k=12 dH M oH M
3 e 161 (D12 66) Mk 26MK Xy _ Xy Xy _ xy_le (31b)

ay ay ax X
Through the use of the characteristic equati@dc), it can be

proved that these coefficients possess the following relations: The second and third moment equilibrium equatict) will

be satisfied automatically if we introduce the stress functigns

Sc— =0k, Sktry=—hu, k=12 (29) and ¢, such that
With the general solutions given in Eq26) and (27), to get ad, ady
. . H —_— —_—= *
the complete solutions the only functions remained to be found o vy =Hy
are the complex functions/;(z;) andw,(z,), which should be y (32)
determined through the satisfaction of boundary conditions. If the Iy Iy
plate is subjected to bending only by forces and moments distrib- W ="My, = Hyy -

uted along the edge and no transverse load is applied on the top or
bottom surfacesi.e., q=0), the boundary conditions of loadedsimilar to the surface tractiony (= on;), we now define the
and predisplaced edges shown in E2f) can be replaced bj?]  surface momeni; by
° = — *
2 Re{glwi(zl)Jfngé(Zz)}:*f (mdy+fdx)—cx+cq, Mi=Myni+Hyeny,  Mp=Hn+Myn,. (33)
0 (30a) From Fig. 1, we see that

S .
2 Rdh1W1(21)+th£(Zz)}:—f (—m dx+f dy) +cy+c,, n;=cosf=2adylds, n,=sinf=—axl/ds. (34)
0 Substituting the relations given in Eq82) and(34) into (33), we
and get
HW* d¢ 1z
2 REW}(zy) +Wh(z)} = — sin 6+ a* cosé, Mi=——=2, Mp=—r. (35)
Js (300) Js Js
IW* Like the surface traction, the definitions given in E83) are the
2 R Wi (Zy) + pmoWh(2,) } = s cosf+ a* sing, components of surface moment vector in xrendy directions. To
find the component of surface moment in the direction normal to
where the boundary, we may use the transformation law for vectors, i.e.,
< M cosé+M, sin 6. With the equations given in Eq$33), (34),
o f pds, (300) and the first relations in Eq§31a) and(22b), it can be proved that
0

M cos6+M, sin§=cos’ M, +sir? OM+2 sing cosoM,
andsis the arc length measured along a curved boundaiythe _
angle between the normalandx axis (see Fig. 1 =M. (36)
Although Eqs.(30a)—(30c) are given in Lekhnitskii's book2],  Substituting Eq(35) into (36), we can expreshl,, in terms of the
only a reference written in Russighekhnitskii [12]) is cited and stress functions as
no detailed explanation is given. Since their associated physical
meaning is important for the following development, we now try
to relate Eqs(30a) and (30b) with the original boundary condi-
tions (23d) and (23g). o
Consider the loaded boundary condition for whiég=p and Similarly, we can prove that

dp1 dps
Mn—gsma Ecose. 37)

M,=m along the edges, as shown in E&3d). At the first glance, P PRy i

it is hard to imagine why Lekhnitskii used E¢B0a) to replace v/, =—(—M, sing+M,cosf)= — 771 c0s6+ —2sinel .
(23d). Looking at the definition of effective transverse shear force = 95 S\ ds s

(20), the transformation la22) and the complex variable expres- (38)

sions(27), we found that it is really complicated to describe the

loaded conditions for curved boundaries by the usual way. F&sing the relations obtained in Eq&7) and(38), and knowing
elasticity problems, the loaded conditions are usually called trdfatdy=coséds, dx= —sin éds we now prove that

tion boundary conditions in which the tractiofsare prescribed s

along Fhe boundaries. Using Cauchy’s formyla oy;n;, and in- f (Mndy+vndx)= — o(S)+ ,(0),

troducing the stress functiong; such thatoj; = — ¢; , and oy, 0
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s ~ easier. Therefore, to be successful in forming a Stroh-like formal-
f (=Mpdx+V,dy) = ¢1(s) — ¢1(0), (3%) ism for plate bending problems, the selection of the proper stress
0 function vector and displacement vector is important. To be con-
where venient for problem solving, this selection should be consistent
. with the expressions of boundary conditions. By viewing the
v :f V.ds (3%) boundary conditions of loaded and predisplaced edges shown in
L P Eg. (30) and the derivation presented in E¢31)—(40), we now

) ) o introduce the stress function vectgrand the slope vectot as
This result(39) together with the definitiori32) and the expres-

sions(27a) and (27b) can then help us to prove that the loaded ow
boundary conditiori23d) may be replaced by E¢30a). From this ® - j M, dx « Ty
derivation, we know that30a) stands for the prescribed condi- ¢:[¢1} = , a:{ 1] = W
tions of the stress functiong, and ¢, which are defined in Eq. 2 _f M, dy @2 -
(32. X

After proving the replacement of loaded boundary condition, (41)

we consider the pre-displaced boundary condition for which It looks odd to put the minus sign and have the orderyak)

=w" and dw/dn=a* along the edges, as shown in H@3e). jnstead of &,y) in introducing new vectorg41). However, in
Sincew=w* along the edges, it leads tav/gs=ow"/ds along qrder that our final solution form can match with the Stroh for-
the edges. Hence, the predisplaced boundary condition may Rgjism for two-dimensional problems, this selection is necessary.
replaced bygw/ds= dw*/ds and dw/dn=a*, which means that  Employing these two new vectors, the general solutions for the

both of the slopes in the tangential and normal directions of thgate bending problems given in Eq&6) and (27) can now be
boundary are prescribed. According to the transformation law gipressed in the following Stroh-like form,

vectors, this condition can be further replaced by
W P a=ayt+2 RE§BW' (2)}, ¢=¢o+2RdAW'(2)}, (42a)

ow
. ow L . ,
g5 Sino, gy @ s 6+ —g cosé. wherea, and ¢, are the particular solutions related to the lateral

(40) load distributiong; A, B, andw are defined as follows:

Substituting Eq.(26) with g=0 into (40), we obtain Eq.(30b). Wi(zp)
From this derivation, we know that E¢30b) stands for the pre- A=[a; a], B=[b; by], w(z)=) (z )J, (420)
scribed conditions of slopes in theandy directions. 252

A
— =a* cosf—
X

where
4 Stroh-Like Complex Variable Formalism

The complex variable formalism shown in the preceding sec- ak=(hk}, bk:[ fk] k=1,2. (4z)
tion was developed by Lekhnitskii about 60 years ago. A very 9k

similar but more popular formalism also developed by Lekhnitskii The loaded and predisplaced boundary conditi®l) and
is for two-dimensional linear anisotropic elasticity]. Another (23e) are replaced by Eqg30a) and (30b), which can also be
important complex variable formalism is called the Stroh formalyritten in matrix form as

ism, which is now applied mainly to two-dimensional problems.

The Stroh formalism can be traced to the work of Eshelby et al. s

[29]. However, it was named after Stroh because he made a major 0(_ mdx+ fdy) +cy+c;

contribution about the establishment of a material eigenrelation, = s ,

which let the Stroh formalism become more elegant and powerful - f (mdy+ fdx) — cx+c,

than the Lekhnitskii formalism, and laid the foundations for re- 0

searchers who followed hirf8,4]. Recently, an important book (43)
about anisotropic elasticity was written by Tihg], who reorga- aw* .

nized the Stroh formalism and developed many important proper- " s cosf—a” siné

ties that were then used to solve many elasticity problems. During a= Iw*

these few years, there are also some works discussing the relations —
between the Lekhnitskii formalism and Stroh formaliéa-11].

Although there are many contributions related to Lekhnitsk,

and Stroh formalisms, most of them are for two-dimensional proéb—lIth the expression#43), the commonly encountered boundary

lems. It is rare to see any contribution using Lekhnitskii’s comgond'tlonS(ZSb) and(23c) can now be written as

S sin 0+ a* cosd

plex variable formalism described in the preceding section to clamped edge: a=0;
solve the plate bending problems. The main reason for this low ' (44)
usage is possibly due to its mathematical difficulties. To remedy free edge: ¢=0.

this, one may consider its counterpart of the Stroh formalism. In

this paper, we try to reorganize the Lekhnitskii formalism into As to the mixed boundary conditions like the simply supported

Stroh-like formalism and hope that the merits of the Stroh formag¢dge(23a) and the elastic supported ed@sf), no simple vector

ism will make the solving of plate bending problems becomtrm expressions can be obtained. The same situation occurs for

easier. two-dimensional problems, which are usually solved by using the
In order to reorganize the Lekhnitskii formalism into a Strohcomponent expressions. In this sense, relati@@sand(38) may

like formalism, one should first know the Stroh formalism foibe utilized to express the moment and effective transverse shear

two-dimensional anisotropic elasticity. For the convenience of tfierce, while the deflection and slope may be expressed with the

readers, the Stroh formalism is summarized in Appendix A. Trassistance of Eq$22a) and(26). For example, the boundary con-

key difference that makes the Stroh formalism more attractiiition of simply supported edges can be written as

than the Lekhnitskii formalism is that the former is presented in o o

matrix form instead of scalar form and its associated eigenrelation _; o ZPL o, P2 _

and orthogonality relation provide many useful identities that simply supported edge: w as sind s c0s6=0.

make the complex variable mathematical manipulation much (45)
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5 Eigenrelation D*, D¥, D%

The key feature that makes the Stroh formalism more attractive D-1=| D% 5 L 1_26—1:1_2 s (48)
than the Lekhnitskii formalism is that it possesses the eigenrela- . . . 3 hd
tion that relates the eigenmodes of stress functions and displace- Dis D3 66

ments to the material properties. Without the eigenrelation, 0Rg match with the rulg46), we reorganize the inverse relation
cannot feel the benefit of the Stroh formalism. Therefore, it BD-1=1 into

important for us to establish the eigenrelation for the Stroh-like
formalism developed in the preceding section. Otherwise, the for- D, Dy, —2D
malism is just a skeleton without any spirit inside its body. In D D _2D

order to establish the eigenrelation for the Stroh-like formalism of 12 1 16
plate bending problems, it is better for us to know the eigenrela- —2Dys —2Dj1g 4D
tion for the Stroh formalism of two-dimensional problems and its

corresponding characteristic equation in Lekhnitskii formalism * * —Zp*
(see Appendixes A and)B = 2 22
In general, the two-dimensional problems considered in aniso- 1
tropic plates include not only in-plane but also antiplane problems X T ’1*1 - D | =1. (49)
and the problems where in-plane and antiplane deformations 2
couple each other. For this general case, the characteristic equa-
tion associated with anisotropic materials is a sixth-order alge- - §D§6 - ED*{S ZDge

braic equation. In this paper, we only consider anisotropic plates - -

having one plane of elastic symmetry located at the middle suith this relation and the definitiofA18) for the in-plane prob-

face, i.e., the monoclinic plates. For this case, the in-plane alans, we know tha®, R, andT for the plate bending problems

antiplane problems will decouple. The characteristic equation fshould be defined as follows:

the in-plane problems is a fourth-order algebraic equation, while

that for the antiplane problems is a second-order equation. For the 5 _ E D* — -D* D%,

bending problems considered in this paper, a fourth-order charac- 2% %

teristic equation is also obtained in E@4c). Therefore, it is ~ Q=| 1 L 1 ,

better for us to perform the comparison through in-plane problems —--D3 -D¥

for monoclinic plates not through general two-dimensional prob- 2 4

lems for anisotropic plates. (50)
By comparing Eqs(24c) with (B12), we find that these two 1. 1.

characteristic equations will be equivalent if we make the follow- 2766 T 5P

ing replacements: T=

: : : ~2ph Dk
S119D2,  SpDuai, S~ Dia, (46) 271

- ~ A In order to check whether the eigenvalues and eigenvectors of
Sige>—2Dg6, Sy~ —2D15,  Sge—4Des- the eigenrelation(47) with Q, R, and T defined in Eq.(50) are
equivalent to those obtained in Eq&4c) and(42c), we first try to

A simple rule for the above replacement is that when we want bq:'t the explicit expressions of;, N,, andNs. By following the
changeSinto D the subscripts 1 and 2 should be interchanged aRgeps described in Ting's bodk], we obtain(see Appendix €
the symbolD with subscript 6 should be multiplied by2. Ac-

cording to this rule, we observe that the eigenvectors for the in- —2Dg 1
plane problems given in E¢gB13) with g, andh, defined by Eq. Dy,
(B11) can be successfully transformed to the eigenvectors for the N, = D )
plate bending problems given in E@Z2c) with g, andh, defined —1 0
by Eq. (28). By referring to the eigenrelation for the in-plane D2,
problems, the eigenrelation for the plate bending problems can be 4D2 2D..D
written by using exactly the same form as Eg&11)—(A13), i.e., 4D gg— 26 — 2Dyt 12-26
D2, 22
- Ny= , 51
NEmns @ |, 2DuDa D%, oy
where 16 1D,
N— Ny Nz _|a 47 __1 0
- N3 N':[ ’ - bl ( ) N3: D22 .
0 O
and

Substituting Eq(51) into Eqgs.(47a) and (47b), we can find that

1T T Cor1pT AT [N—pwl||=0 is equivalent to Eq24c), and its associated eigenvec-
Ni==T7R, Np=T"=N;, N3=RTR'—Q=N;. tor is the one written in Eq42c) whereg, andh, are defined in
(47c) Eq.(28).

The three X2 real matrice®, R, andT defined in Eq(A18) for 6 Orthogonality Relation

the in-plane problems are written in terms of the elastic qonstantsrhe eigenrelation shown in qu],?) has exactly the same form
Ci; , which are the inverse of the reduced elastic compliaSges as that for two-dimensional problems. The only difference be-
Therefore, to construd, R, and T for the plate bending prob- tween plate bending problems and two-dimensional problems is
lems, we need to use the inverself . According to the defini- the definition ofQ, R, and T, which is Eq.(A14) for general
tion of bending stiffnes¢11) and the inversion relatio(6), the two-dimensional problems, is EqA18) for in-plane problems,
inverse ofDj; can be written as and is Eq.(50) for plate bending problems. With this understand-

702 / Vol. 70, SEPTEMBER 2003 Transactions of the ASME



ing, it is expected to have the same orthogonatlity relation as th
for two-dimensional problems. That {see Appendix D

BT AT
BT AT

A Al 10
B E{o J’ ®2) y

which is also theorthogonality relationfor the plate bending
problems. The two %4 matrices on the left side of E¢52) are
the inverse of each other, and hence their products commute, i.

BT AT

BT AT

A A
B B

I 0
S

or

ABT+ABT=I=BAT+BAT,

e o (53b)
AAT+AAT=0=BB"+BB".
From the relations obtained in E¢p3b), it can be observed that
the following three matrice§,;, H,, andL; are real, which ap- Fig. 2 An anisotropic plate weakens by an elliptical hole sub-

pear often in the final solutions to two-dimensional anisotropi€cted to out-of-plane bending moments
elasticity problemg5]:

— T — 9 T — H T

SI=I(2AB 1), Hp=2IAAT,  L,=-2iBB.. (54) for two-dimensional problems, the pure bending problems for the
Usually the eigenvectors defined in E42c) may vary up to an homogeneous anisotropic plates can be solved directly even with-
arbitrary multiplier. However, if the orthogonality relatid52) or out detailed derivation if their counterparts in two-dimensional
(53) is used in applications, normalization of eigenvectors amroblems have been solved previously, or vice versa.” In this
needed because the unit matriis employed in Eq(52) or (53). sense, the examples given below are solved briefly and most of
By multiplying the eigenvectora, andby given in Eqg.(42c) with  the critical steps(such as the choice of the unknown complex
a normalization factoc,, and using the orthogonal relatiés2) functions, the solving of the unknown coefficients, and the con-
or (53), one may obtain the normalized eigenvectors as version to the real form solutiongre dealt with by referring to
} their counterparts of the two-dimensional problems and no de-

akZCk(hk}y bkzck[ el (55a) tailed explanations are provided in this paper. For those who are
9k 1 interested in the detailed explanations of all these critical steps,
where please refer to Ting's book5] for anisotropic elasticity or my
L previous related workg31-36.
2(9e— pih) k=1,2. (5%) 7.1 Example 1: An Anisotropic Plate Weakened by an EI-
) ) ) ) . liptical Hole Subjected to Out-of-Plane Bending Moments

Since the eigenrelatio7) and the orthogonality relatiof52)  an anisotropic plate weaken by an elliptical hole is deflected un-
or (53) have exactly the same form as those for two-dimensiongér uniformly distributed momentd as shown in Fig. 2. There is
problems, all the identities developed based upon these two relg-|oad around the edge of the hole. The diameter of the hole is
tions in the Stroh formalism for two-dimensional anisotroplc elagsonsidered to be small in comparison with the length of the plate
ticity should all be valid for the plate bending problems discussegljes, and the hole is situated far from the edges. Thus, the plate is

'3 thti_f_ paper. One may refer to Ting,30] for various useful considered as infinite. The contour of the hole is represented by
identities.

The normalization given in Eq55) means that each compo- x=acosy, y=bsiny, (57)
nent of w(z) defined in Eq.(42) has a factor change and Ed.yhere 21 and 2 are the major and minor axes of the ellipse and
(262) should be modified as ¥ is a real parameter. By using the stress function vegiamd

W=Wo+ 2 RECyW;(Z;) + CoWa(Z) (56) slope vectora introduced in Eq(41), the boundary conditions of
this problem can be expressed as

ci=

wherec, andc, are the normalization factors given in E§5b). _ o
¢=—Myi,, at infinity,

(58a)
7 Examples ¢=0, around the hole boundary,
Before dealing with the examples shown in this section, we meghere
to emphasize that the main purpose of this paper is trying to ) 0
develop a fully Stroh-like formalism for the bending analysis of 2= (- (580)

anisotropic plates and hope that the same concept can be extended ) o ) ) ]

to the more complicated problems like the coupled stretchinfjlote that the first relation in Eq58a) is obtained by usingv,
bending problems. Because even the coupled stretching-bendmlyl: My=My,=0 at infinity and the definitions given in Eq.
problems have been dealt with in the literature suctiLasand . ] ) )
Mahrenholtz[22]), repetition of the example solving exercise es- Since no lateral load is applied on the plate, the particular so-
pecially for the more simple cases discussed in this section{ion ¢y andag of Eq. (42a) is set to be zero. In order to satisfy
meaningless. The meaningful insight of the following illustrationhe boundary condition at infinity, part of the homogenous solu-
is that the solution process as well as the final solution form ali@n w’'(z) proportional toz is separated and denoted @y and
exactly the same as those of the solution of two-dimensional prot~, which is then added to the general solutida) as

lems by the Stroh formalism. Therefore, after viewing the ex- e , o ,

amples one should have more confidence in what we said, “By b=¢"+2RAAN'(2)},  a=a"+2R4BW(2)}, (5%)
simple analogy of our present formalism with the Stroh formaliswhere
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& =—Myi,, " =M(dy—dyx), (5%) 8 Conclusions

and A Stroh-like complex variable formalism for the bending theory
. . of anisotropic plates is established in this paper by taking the
d. = —D3d2 _ 12 (5%) advantages of the Stroh-Lekhnitskii connection. Its associated
! Dy, |° "2 |-D3J2" eigenrelation and orthogonality relation are also obtained. Almost

w - . all the relations have been purposely arranged to have the same
In Egs. (5%) and (5%), ¢” is selected to be match with thefom a5 those of the corresponding two-dimensional formalism.
boundary condition at infinity, whiler” is calculated by integrat- The results show that the only difference from the two-
ing the curvature vectok from Eq. (10b) with My=M, My  gimensional formalism is that the eigenvector matriéezndB of
=M,,=0 and using the symbol given in E@8) for the inverse the general solutions shown in E@2) have been interchanged.
of the bending stiffness. Note that the constant terma ahd¢>  pye to the similarity, almost all the mathematical techniques de-
have been neglected since they have no contribution to the INtG&Ioped for two-dimensional problems can be adopted for the
nal stresses of the plates. N plate bending problems. By simple analogy, many problems that
To satisfy the free edge condition around the hole boundagannot be solved previously now have the possibility to be solved
shown in the second relation in E¢G8a), by referring to the anaiytically. For the purpose of illustration, two examples are
solutions of the corresponding two-dimensional probld®@- golved analytically. One is an anisotropic plate weakened by an

34], we select elliptical hole subjected to out-of-plane bending moments, the
2o+ m othe_r is an_anisotropic plate embedded with a rigid elliptical in-_

W (2)=(s DK,  s= k_ K (60) clusion subjected to out-of-plane bending moments. The former is

a—iukb a traction boundary value problem, while the latter is a displace-

where the angular brackét) stands for the diagonal matrix, i.e., Ment boundary value problem. The solutions show that they pos-

-1 el —1 _—1 ; i sess almost the same forms as those obtained for the correspond-
=dia S5 s3], andk is the unknown coefficient vector : X . o .
{sk ) ds; s 45571 g two-dimensional problems. This gives us a hint that most of

to be determined through the satisfaction of the boundary con{ﬂe pure bending problems for the homogeneous anisotropic plates
tion. Substituting Eq§(57) and (28v) into (60), we obtain can be solved even without detailed derivation if their counter-
w’(z)=e" 'Yk along the hole boundary. (61) parts in two-dimensional problems have been solved previously.

T ' . . The results of this paper stimulated us to develop a fully Stroh-
Substituting the first relation of Eq5%) and Eq.(61) into the . . . f ;
first relation of(59a) with x andy given by Eq.(57), the free edge like formalism for the coupled stretching-bending analysis for

o ) general composites. For the readers who are interested in the fur-
boundary condition, the second relation of Esga) now leads to ther development, please refer to our most recent W28k
ibM
= —_— -1
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a=a”—bM Im{B(s, HA " Y}i,. Appendix A: Stroh Formalism for Two-Dimensional An-

With the explicit solution found in Eq(63), the deflection, isotropic Elasticity
bending moments and transverse shear forces of the plate can thaR a fixed rectangular coordinate system i=1,2,3, letu;,
be obtained by using the relations given in E@l) and(32), or gy, , ¢;; be, respectively, the displacement, stress and strain. The
by using Eqs(26) and(27) with w found by Eqs(60), (62), and  strain-displacement equations, the stress-strain laws, and the equa-
(56). Like the two-dimensional problems, by using some identitiefons of equilibrium for anisotropic elasticity are
the moments around the hole boundary can be obtained in a real 1
explicit form. A detailed derivation and the related numerical cal- ;= 3(U; ;+Uj ), (Ala)
culation and discussions as well as the reduction to crack prob- _
0ij = Cijks€ks, (Alb)

lems can be found in Ref36].
. . . gij; =0, (Alc)
7.2 Example 2: An Anisotropic Plate Embedded With a o ) .
Rigid Elliptical Inclusion Subjected to Out-of-Plane Bending Where repeated indices imply summation, a comma stands for
Moments. In this example, we are dealing with the predisplaceglifferentiation, andC;; are elastic constants, which are assumed
boundary conditions since the edge of rigid inclusion cannot ut be fully symmetric and positive definite. Consider a two-
dergo deformation. Like Eq58), the boundary condition of this dimensional deformation in whicly , i=1,2,3, depend or, and

k

By combining Egs(59), (60), and(62), the final explicit solution
of the present problem can be expressed as

problem can be expressed as X, only, the general solution to E¢AL) can be written as
6
d=—Myi at infinity,
? (64) u=> afi(z), z=xtmxe, (A2)
a=0 around the hole boundary. k=1
By the approach similar to example 1 and referring to its corréd Which f,, k=1,2,...,6 arearbitrary functions of their argu-
sponding two-dimensional probleni81,35, we obtain the ex- Ments andu, anda, are the eigenvalues and eigenvectors of the
plicit solution for this example as following eigenrelation:
é= ¢+ M Re{A(s, B Y(ad,;—ibd,)}, (65) {Q+u(R+R")+u’Tla=0. (A3)

e hp-1 . In Eq. (A3) the superscripT stands for the transpose a@d R, T
a=a”+M Re[B(s, ")B™*(ad; —ibdy)}. are the X3 real matrices given by

Detailed comparison and discussion of this result are also given in

Ref.[36], from which we know that our solution can be reduced Qi=Ciza» Ri=Cize,  Tik=Ciziz, (A4)
to the solution found in the literature for the special case of orthin Eq. (A2), we assume that the eigenvalyeg, k=1,2, ... ,6,
tropic plate embedded with a rigid circular core. are distinct and its associated eigenvectysk=1,2,...,6, are
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independent each other. Singg cannot be real if the strain en-

ergy is positive[29], u, occurs as three pairs of complex conju-
gates. We lefu, 3= uy, Im(u)>0, k=1,2,3, where an overbar where

denotes the complex conjugate and Im stands for the imaginary

part. We then havey ., 3=a, k=1,2,3. For the displacemeuntto
be real, we lef, ;=f,, k=1,2,3, and Eq(A2) becomes

3
u=2 Re{ gl akfk<zk>j,

in which Re stands for the real part. Introducing the vector

(AS)

b=(R"+uT)a= !

H M
where the second equality comes from EA3), the stressesy;
obtained by substituting EqA2) into (Ala) and (Alb) can be
written as

(Q+uR)a (AB)

oi1=—di2, 2= i, (A7)
where ¢ is the stress function
3

¢=2 Re{ 2 bkfk<zk>} : (A8)

If we introduce a X1 column vectoif(z) and two 3x3 complex
matricesA andB by

f(2) :{fl(zl)fz(zz)fs(zs)}T,

(A9)
A=[a, a ag], B=[b; b, bs],
Egs.(A5) and(A8) can be written as
u=2RdAf(z)}, ¢=2ReBf(2)}. (A10)

u=2 RdAf(2)}, ¢=2ReBf(z)}, (A15)
f(@)={fu(z)f2(2))", (AL6)
A=[a, a], B=[b; by].
The eigenrelation is
NE=ué, (A17)

where& is a 4x1 column vector defined in E§A12b), andN is a
4x4 matrix defined in Eq(Al2a) of which N;, N,, andN; are
three 2<2 matrices defined in Eq$A13). Q, R, and T matrices
defined in Egs(Al14) are then reduced to

[Cll 016}
CZLG CGG’

Cis
Ces

Ci
Co

[Cee

Cze}
Ca '

C22
(A18)

Appendix B: Lekhnitskii Formalism for Two-Dimen-
sional Anisotropic Elasticity

Consider the basic equations given in E&l), and assume that
the stresses are independenkef The equilibrium equation will
be satisfied automatically if we set

O3=— 1,

(B1)

O11= X220 022=X,11»  012= — X 12

o3= .

Substituting Egs(B1) into the stress-strain relation, we may ob-
tain the expressions of strains in termsyoéind . According to
the strain-displacement equations, integration of strains may lead

Equation(A6) can be reconstructed into the following standartp the expressions of displacements. Moreover, since three dis-

eigenrelation

Né=ué, (A11)
where
N1 N
N= , Al2a
N, NI (A129)
a
&=ipl (A12b)
and
N;=—T7'RT, Np=T *=Nj, N;=RT'R"-Q=Nj.

(A13)

Note that for the convenience of readers’ usa@eR, T de-
fined in Eq.(A4) are usually written as

Cll ClG C15 ClG
C16 C66 CSS, C66
015 C56 C55 C56
Ces Cue
Czs Cax Cyy,
Cs Cos Cu
whereC;; are the contracted notation of elastic tenSqy, [5,26].

Ci
Cu
Cus

Cu
Cus|,
Cus

Q= R=

(A14)
CZG

T=

placement components come from five strain components, two
compatibility conditions are needed. The satisfaction of these two
compatibility conditions will then lead to the following sixth-
order characteristic equatida]

Co()€a(p) —[€3(p)]1?=0, B2)
where
Co(p)= é355:“«2_ 2AS45/J«"‘ Sua,
()= é15M3_ (é14+ ése),uz"‘ (§25+ é46)# - é24: (B3)

C4(p)= :311#4_ 2A816M3+ (2A512+ éee)Mz_ 2é26M+ é‘zz,

and éij are the reduced elastic compliances defined by

Sj=Sj—Si3Ssj/Sss-

It has been proved that the roots of the characteristic equation
(B2) are exactly the same as those obtained in(Bg) or (A11)
[7-11). If we assume thak,, u, andug are distinct, the general
solutions of stresses and displacements derived according to the
approach described above can then be expressed as

(B4)

o11=2 Re{ u3f1(20) + u3F5(20) + uihaf5(23)},
09— 2 qui(zl) + fé(ZZ) + }\3fé(23)},

01,= — 2 Re u1F1(21) + 1o 5(20) + mahsfs(za)},  (BS)

In-Plane Problem. Consider the anisotropic materials having

one plane of elastic symmetry, i.e., the monoclinic materials. In

013=2 R i\ 111(21) + ok ot 5(25) + uafa(za)},

this case, the in-plane and anti-plane problems will decouple. If

only the in-plane problems are considered, the general solution

(A9) and(A10) and its associated eigenrelatidig 1)—(A14) can
be reduced to the following. The general solution is

Journal of Applied Mechanics

023=2 REN1T1(Z1) + N\ 5(25) +T3(23)},

and
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3
up=2 Re;l hef (i),

3

Up=2 ReKZ1 afi(20, (B6)

3
uz=2 RekZl exfi(ze),

wheref(z), k=1,2,3, are three holomorphic functions of com
plex variablesz, (=x;+ uyX,), which will be determined by the
boundary conditionsy,, hy, g., ande, are defined as

N=—C(m)/€x(p1),  No=—€3(u)l (1),

(B7)
Ng=—C3(u3)/ €4 u3),
and
h=S1114¢+ S1o— Stk + M Sisiek— Sia),
. S» - . Sy
Ok= S1opkt —— Spet M| Sps— — |,
Mk Mk
2 S 4 - - é44
ek:Sl4,U,k+ __846+)\k 845_ _), k:1,2,
i Mk i i {'Lk X (BS)
h3=N3(S1ip5+ S1o— Sights) + Sisita— Sua,
- Sp oo | Su
S
g3= A3 O1013 s Sy +S5 P
S

+ 845_

. Sy -
€= 7\3< Siapzt s Sue

By viewing the component form solutior(85)—(B8) and the
matrix form solutions(A9)—(A10) or (A5)—(A8), it can be seen

that
hy — Mk hs
a=)9(, b=y 1 ;, k=12, a=10s(,
€ =Ny €3 (B9
— M3h3
b3— )\3
-1

In-Plane Problem. Similar to Stroh formalism, for in-plane
problems of monoclinic materials the general soluti¢Bs)—(B8)
can be reduced to

o11=2 Reuif(z)) + u3fH(2)},
02=2 Re{f1(z))+ 5(20)},

1= — 2 R u111(21) + 121 5(25)}, (B10)
2
u;=2Re>, hf(z),
=1
2
up=2 RekZl Okfi(z),
where
hk:ASn,U«ﬁJrélz* ékav (B11)

R Sy, -
Ok= Siomkt —— S
Mk

The associated characteristic equatiB®)—(B4) can also be re-
duced to
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Spap?—2S;6u3+ (2S)5+ See) 2 — 2S6u + Sp= 0. (B12)

From Eq.(B9), the eigenvectors of Stroh formalism can also be

reduced to

Mk
1

1,2. B13)

aolol w1

Appendix C: The Explicit Expressions of N;, N, and N3
for the Plate Bending Problems

By following the steps described in Ting's bodk], we rear-
range Eq.(49) into

1

1
D3, _ED;% _ED;% DY,
1 * 1 * 1 * 1 *
_EDze 4_D66 ZDse _5D16
1 * 1 * 1 * 1 *
—5D%  7D6 7D6 3Dl
1 1
DY _ED?% _EDTe DY
[ Dp O —2Dy Dy
0 0 0 0
X
—2D, O 4D —2D
Dy, O —2Dy Dy
rt o 0 0
0 0 1 0
0
L 0 1 (1)
Equation(C1) can also be written in matrix form as
Q R Q; R; I1 I12
R TRT T+ |0 | (€2
Employing the relation
I NI[Q R] [-N; O
= , C3
0 NJ|RT T| [-N; | ©3)

which can be verified by using the definitigd7c), Eq. (C2) be-
comes

_NS 0 Q; R; I NI I1 |12
= c4
-N; IJRET T*| |0 NpJ{O I (C4)
or
~NaQ5 =11, —NgRE=I,+N], —N;Q5+R3"=0,

—N;R% +T*=N,. (C5)
By knowing the structures dfl; andN;, which are[30]
- * 0
le{* 0 } N3=[0 ol (C8)

and making use of EqC5), the explicit expressions dfl;, N,
andN; can then be obtained as those shown in &4).
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Appendix D: Proof of the Orthogonality Relation,
Eqg. (52

Because the form of the eigenrelation for the plate bendin
problems is exactly the same as that for the two-dimensional pro
lems, in order to prove its orthogonality relation we just extract

the proof provided in Ting's book5]. Since the matriXN of the
eigenrelation47) is not symmetric, its eigenvectdris generally
called right eigenvector. Its associated left eigenvegtaatisfies
the following eigenrelation:

NT#=un. (D1)
Introducing the constant matrix
0 |
=], 0}, (D2)

it can be shown thal=J"=J"1 and JN is symmetric, i.e.JN
=(IN)"=NT"J. Premultiplying both sides of Ed47a) by J and
usingJN=NTJ, we obtain

NT(J§) = n(3§). (D3)

By comparing Eqs(D1) and (D3), the left eigenvectorp can
therefore be assumed to have the form

ol

(D4)

To prove that the left and right eigenvectors associated with dif-

ferent eigenvalues are orthogonal to each other, we consider
distinct eigenvaluesy; and u;. Their associated eigenrelations
can be written as

N&=wmi& (D5a)
NT= ;7. (D5h)

Premultiplying both sides of EqD5a) by an and premultiplying
both sides of Eq(D5b) by £, we have

gNE=pin &, (D6a)

ENTm=p; &y (Déb)
Transposing both sides of E¢D6b) and subtracting its results
from Eq. (D6a), we obtain

(i = m) 7 &=0. D7)

Hence, ifu;# u;, an§=0. The right eigenvectof given by Eq.
(47), and hence the left eigenvectgrby Eq.(D4) is unique up to
an arbitrary multiplier. Assuming that, , k=1,2,3,4 are distinct,
we may then normalizé, by

nE=5;. (D8)

In view of wy.»= k. & 2=2a, beio=Db,, k=1,2 and the defi-
nitions in the first two relations in E¢42b), the second relation in
Eq. (47b), and relation(D4), the orthorgonality relatioliD8) can
therefore be written as that shown in E§2).
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Introduction As an improvement to the standard linearization solufidh

In the investigation of randomly excited rnulti_degree_of_alternative strategies have been developed by introducing in the
freedom (MDOF) dynamic systems the power spectral d(_:‘nsitequwalent linear system damping and stiffness elements depend-

. . . A . ?ﬁg on random parametef§—8]. Note, however, that these pa-
matrix of the stationary response provides (_:rltlcal information f(}'élmeters relate to a van der Pol transformation adopted for the
design and reliability analysis purposes. It is known that the fr&y sem response, which is taken to be narrow band. This method,
quency content of a linear system response is related to the figan is pest suited for nonlinear systems with light damping sub-
quency content of the excitation through a linear transformaﬂq@cted to wide-band excitatior9,10].

that involves the _system transfer function matrix. The frequency Recently, the authors have pursued an alternative formulation
content of a nonlinear system response, however, does not Igfic numerical technique, known in the literature as a “Galerkin
itself to a straightforward mathematical representation, Sincetébhnique” [11,12, which resorts to basic concepts of spectral
single-frequency excitation may generally lead to a multifreanalysis and signal processing to estimate the response power
quency response. spectrum of nonlinear single-degree-of-freed@®DOP systems.

A general approach to capture the effects of nonlinear behavigrthis context, the stationary response process has been expanded
may be based on the so-called Volterra series expaiiorThe in an N-order Fourier series, over an adequately long intefival
central concept of this approach is to expand the response procgss the unknown Fourier coefficients of individual samples of the
in a time-domain series where terms of ordearen-fold convo- response process have been determined by harmonic balance. To
lution integrals, which involve excitation times of the input. The solve the set of nonlinear equations obtained from harmonic bal-
corresponding frequency-domain representation, therefore, exhilrce, the authors have developed an efficient solution scheme
its multifrequency response transfer functions. For polynomiglased on Newton's method, where exact solutions for the Fourier
nonlinearities, impulse response functions of any ordare ex- coefficients of the nonlinear terms have been used. In this manner,
pressed in terms of the first-order response functions, which asesignificant reduction of computational effort has been achieved
known from linear analysis. The system response power special compared to the previous formulation of the technique, where
density matrix can be then computed by multifold integrals in than extensive use of the fast Fourier transf¢RRT) technique has
frequency domain, as long as the Volterra series is truncatedbteen madd11]. Then, estimates of the response spectrum have
finite order. In this context and to handle arbitrary nonlinearitiebgen constructed by averaging the square modulus of the com-
the so-called quadratization and cubicization procedures haweéted Fourier coefficients over a number of samples.
been developefR,3]. They involve replacing the original nonlin-  This paper presents a formulation of the technique that is ap-
earities by equivalent polynomials of second or third order to Hdicable for both SDOF and MDOF systems. Numerical results for
solved by the Volterra series method. The applicability of theseRayleigh oscillator and a four-degree-of-freedom system featur-
methods, however, is hampered by the significant computatiora@ flow-induced nonlinearities demonstrate its reliability.
cost involved, especially for statistical cubicizati®)4].

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Spectral Representation of the Response Process
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 16,
2001; final revision, June 5, 2002. Associate Editor: N. C. Perkins. Discussion on thePreIiminary Background. Consider a scalar, real-valued sto-

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen ; _ : ; ;
Mechanical and Environmental Engineering University of California—Santa Barbart‘;'l(l,l.{asnc processy(t), —ee<t<o, stationary in the wide sense,

Santa Barbara, CA 93106-5070, and will be accepted until four months after findfith mean valueu, . According to the spectral representation
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. theory[13,14], y(t) can be represented as
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©

y(t)=puy+ jw COE{wt)du(w)Jrj sinfwt)dv(w), (1)
0 0

the integrals being defined in a mean-square sense. IN(1kq.

In the following, aT-periodic solution of Eq(9), if it exists, will
be referred to as aiN-order Galerkin approximation of the re-
sponse process(t) [11].

Consider next an arbitrary realization of the excitation

u(w) and v(w) are stochastic processes whose incremeniy0CESSES

du(w) anddv(w), have the properties

E[du(w)]=E[dv(w)]=0, =0 (2a)
E[du(w)du(e")]=E[dv(w)dv(w')]=0, 0,0'=0, oo’
(2b)

E[du(w)dv(w')]=0, o,0'=0 (2c)

E[ldu(w)[*]=E[|dv(w)|*]=2S,y(w)dw, «=0 ()
with S, (w) being the two-sided power spectral densityygf)

N

N =+, AL cogwt) +BY sin(wgt), 1=1,2,...4d.
" k=1

(10)

The caret is introduced to distinguish the random proc@&(s),

from its generic sample functiorf'(t). To obtainf](t) in the
form given by Eq.(10), digital simulation techniques may be used
[15], or a standard FFT technique may be applied on experimental
data. To determine thid-order Galerkin approximation of the cor-

and E[-] denoting the operator of mathematical expectatiofiesponding realization of the response process, written as
Equation (1) may be interpreted as the limit in a mean-square N

sense of the trigonometric Fourier series

©

y(t)=py+ lim >, U, cogwt) + Vi sinfwd),
T—wk=1

o =kKAw, T=27/Aw, 3)

where U, =u(wy+1) —U(wy), Vi=v(oyr1)—v(w) and Aw
=wy,1— wi. Therefore, properties similar to Eq&) hold as-

N =+ 2 U cogwt) + VI sin(wit), i=1,2,...d
' k=1
11)
the unknown mean valueuxi, and the sequences of unknown

Fourier coefficients{U{’} and{V{"}, must be evaluated for each
degree of freedom. For this, expanding the nonlinear term

G(>A<N,)A(N) in Eq. (9) in a Fourier series, and using harmonic

ymptotically, asT—o, for the sequences of random coefficientdalance lead to the set of K2+ 1)d nonlinear equations

{Ui} and{Vy},

E[U]=E[V,]=0 for any k, (4a)
E[UU;1=E[V,V;]=0 for any k#], (4b)
E[U,V;]=0 for any k,j, (4c)
E[UF]=E[V{]=2S,(w)Aw for any k. (4d)

For numerical applications, an approximationygf) can be ob-

tained by truncating Eq.3) to a certain ordeN, yielding
N

YO =gyt 2, ot o) +Vicsin(id), (5)

Je(@) = (— M +K) U+ 0, CVy

T ~
+$j G(a,t)coq wyt)dt—A,=0, 12)
0

Ins k(@) = (— 0EM +K)Vy— 0, CUy
2 (7 A
+?J’ G(a,t)sin(wt)dt—B,=0, (13)
0
.

- 1 -
JM(af)=nX+?JO G(a,t)dt— pue=0, (14)

where the parametefsandN must be selected adequately largewherek=1,2, ... N; thedX1 vectorsAk, ék, andue are given

Application to the Nonlinear System Response. Next, con-
sider thed-degree-of-freedom system

MX +CX + KX +G(X,X)=F(1), (6)

whereM, C, andK denotedxd mass, damping, and stiffness

matrices, respectivel\G(X,X) is an arbitrary nonlineas < 1 vec-
tor function of the variablesX"=[x;, ... x4 and X'
=[Xq, ... Xql; and F(t)T=[f,(t), ... ,f4(t)] is adx1 vector

stationary random process. The symbol™ (Jenotes vectorial

by the equations

Al=[AY AP LAY, (158)
Bi=[B" B, ... B, (150)
BE=Lae )ty ot ). (15c)

That is,Ak and ék collect the Fourier coefficients of thieh har-

monic of the input in each degree of freedom. Similaﬂy,, Vi,
and uy are written in the form

transposition. Assuming that the system response reaches station-

arity, both the input and the output processes may be represented 012[0&1) ’0&2>] o ]OE(d)]’ (169)
by a truncated Fourier series as in E§). That is, A o A
N V=V V@, v, (160)
N =ur+ >, Al codwt) +BY sin(wt), =12, ...
: ( ) Mfi kgl k ka ) k n(wk ) d M;:[MXIUU’XZI s uuxd]- (163)
) Further, the (2N+1)d]X 1 vectore collects all the unknowns
and - SN -
N a'=[U], ... UVi, ... Vvi.pl (17)
XN =y + D) UY cogwyt) + VI sin(wyt), i=1,2,...d.  For simplicity, the system of Eq§12)—(14) is recast in the form
" k=1
(8) J(a@)=0, (18)

Substituting Eqs(7) and (8) for the ith component ofF(t) and whereJ(a) is a[(2N+1)d]X 1 vector, given by the equation

X(t) in Eqg. (6) leads to
MX N+ CXN+ KX N+ G(XN,XN)=FN(t). 9

Journal of Applied Mechanics

T@=[(@, ... JU@ I 1(@), ... (@) I (@)].
(19)
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Applying Newton’s method to solve E@18), at thenth itera- T NANAN
tion of the solution scheme one writes P°_J 27z;'z; cogwt)dt, (26a)
0
J(aM)+AJ(a™)- (el —alM)=0. (20) .
Clearly, the entries of the vectal(a{), and of the Jacobian Ps=f zNzNz|N sin(wyt)dt, (26b)
matrix AJ(a{) in Eq. (20) must be computed. For this, in Ref.
[11] the use of the FFT technique has been suggested. In thigist be computed fk=1,2, ... N andi,j,| = .21, Ob-

ConteXt g|Ven the Fourier coefficients at thté Step, first the FFT V|ous|y, the |ntegrands in EqQS) and(26) are g|Ven as products
should be used times to determine the time ser|§§‘(sAt) at of harmonics. Thus, exact expressions can be readily found by
discrete timet=sAt, over the time interval. Then, it should be using orthogonality properties of trigopnometric functions over the
usedd times to compute the Fourier coefficients of the time seriggeriod T. Accordingly, it is shown in the Appendix that the entries
of the nonlinear functionsG(a!™,sAt) in J(a™), and (N of both the vectod(e) and the matrixAJ(a) in Eq. (20) can be

+1)d? times to compute the Fourier coefficients of the time serigietermined exactly. .
of the nonlinear functions in the Jacobian matrix, For arbitrary nonlinearities, the proposed solution scheme can

dG(aV,sAt)/da;, where j=12,...,(N+1)d. Further, to be still applied to an equivalent cubic polynomial whose coeffi-

capture supplementary harmonics introduced by the nonlinearitfignts are determined by minimizing a mean- square error over the

and to avoid aliasing, additional computational effort is requirepleriod T. Specifically, introduce for each componegw(Z) of the

to generate the time serle@‘(sAt) since a suitable number of VectorG(Z) the error measure

zeros to the Fourier coefficients m‘\‘(t) should be added at the =gi(2)— () )5 _ ~T5[2] _ ~()T5[3]

beginning of each stefl1]. Clearly, such a procedure becomes 9 (Z) ComCy z 'z G 27 @7)

computationally costly as the dimensioN of the problem where C{ is a constant parameter, a@f’ is a qx1 vector.

increases. Then, at each iteration of Newton’s method the following minimi-
zation problem must be solved:

1 T
Efficient Solution for Systems With Cubic or Equivalent min  — f g?dt. (28)
Cubic Nonlinearity o ) o) o 0

In this section it is shown that, if the system nonlinearities caprom Eq.(28) the linear system of equations
be put in a cubic polynomial form, all the integrals in EB0) can

be computed as closed-form functions of the unknowffs. In Afl Al AT AY cy) BY)

this manner, the implementation of Newton’s method is made AD AL AL AD ] o NG

very efficient and the drawbacks inherent in the use of the FFT 2L T2 TR TR L= 22 (29)
technique are eliminated. Al Al Al AU C Bs' |’

: : : . 0] (i)
Introduce the ﬂxt state vector A AL AW AD cy By
ZT=[XT X=X e Xg X Xal, (21) is derived, where the system matrix is symmetric il are
and assume that block matrices given by
G(2) =G 2)=Cot CrZ+CZH+CZ%, - (22) A<L)ZEJT2U*1}2U<*HTdt (30)
J T o !

where Z[ Pl for p=2,3, is a vector given by the lexicographic
listing of the homogeneous-forms, 201252 --2029, with = p,, andB(" are column vectors given by
—p. That is,ZIP) is agx 1 vector, where

1 (T -
(2d+ p—l) Bi')=$JO Zl~tg(z)dt, (31)
(=),

Further,Cy is adX1 vector andC, are time-invariantdxq ma-
trices, forp=1,2,3. Note that cubic polynomial functions are con:
sidered in Eq(22) in order to represent both symmetric and non*
symmetric nonlinear effects.

Theith component of the state vectﬁr according to Eq(11),
can be represented as

N

for j,k=1,...,4,beingZ!%=1. Clearly, exact solutions can be
used to compute the integrals defined by E3f), and only the
integrals defined by Eq(31) should be in general computed
numerically.

Irrespective of the nature of the system nonlinearities, polyno-
mial or otherwise, from repetitive application of the preceding
technique over various realizations of the input process, an ap-
. ~ “ proximate solution for the two-sided power spectral density ma-
Z =Mzi+k21 U, cogwyt) + V! sin(wyt). (23) trix of the zero-mean response can be found using the equation

E[U U] +V, V][]

Clearly, due to Eq(21) it is seen that Sex(
x(@)=~ )
4Aw

1, =0, Ull=wVid Vi=—oUid i>d (24)

k=1,2,...N. (32

for anyk=1,2, ... N. Consider next Eq§12)—(14). Substituting Numerical Examples

Eq. (22) for G(at), integrals of the form Rayleigh Oscillator. To assess the accuracy of the method,
T consider first the so-called Rayleigh oscillator, in the form
Q.= f 77} cog wyt)dt, (25a) . e
0 X+2{wo(— 1+ ex?)x+ wox="1(1), (33)
T with
Qs=f 2'7) sin i) dt, (250)
0 =4.0, (=0.05 &=40. (34)
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08 At=0.01. It is seen that, as the system reaches stationarity, the
©=4.0, £=0.05, €=4.0 proposed technique reproduces well the response of the oscillator.
06 Figure 2 shows the power spectral density of the response. The
’ new technique and the simulation, both performed over 100 dif-
ferent samples of the excitation process, have yielded virtually
0.4 identical results. The proposed technique, however, has proved
more efficient, as approximately half a dozen iterations at most
02 ) have been required to converge to the approximate Fourier coef-
’ ficients of the stationary response, with a relative tolerance equal
= to 1x10° 3.
= 0
> Flow-Induced Nonlinearity. To assess the usefulness of the
procedure when dealing with an arbitrary nonlinearity, the four-
02 degree-of-freedom system shown in Fig. 3 is now considered. The
motion of this system is governed by E®&), where
o G(X,X)=G%(X)+G(X), (36)
06 Galerkin technique with
““““ Simulation Giki_1.X) =B %1% i=1,...4  (38)
0.8

0 jo 20 30 40 s e 70 8 9 1o and
t Gl(x)=7ylat+x|(a+%), i=1,...,4 (3D)

Note that Eq(37b) is commonly used in offshore engineering for
modeling flow-induced drag forces. The symlit) denotes a
vector of zero-mean, Gaussian processes witbseomponent is
given by the equation

Fig. 1 Rayleigh oscillator, time trajectories of the displace-
ment response

The input excitationf (t) is a Gaussian, zero-mean process with *
two-sided power spectral density fi(t)=

w2
Wg

he(r)w(t—7)dr, (38)

—

wherew(t) is a white noise with unit power spectral density, that

is,
w)= , ws=2.0, z,=0.4.
Sl | ?]? w22 g E[w(tw(t+7)]=278(7), (39)
1-|—] | +|2z5— . . i .
wg Yog and &(7) denotes the Dirac delta function. Further, the filter unit-
impulse response functiohg(7), is associated with the transfer
The approximate time trajectory of the displacemeft), Eq. function
(8), compared to a Monte Carlo recofd5], for Aw=0.15 and
N=50, is shown in Fig. 1. '_I'o perform the digital s_imulat_ion, a Hi(w)= ——=—, w;<|o|sw, (40a)
standard Runge-Kutta algorithm has been used, with a time step V2(wp—w,)
H:(w)=0, everywhere else. (€:)
0.02 To apply the proposed technique as formulated in the preceding
section, at each iteration of Newton’s method the damping terms,
0=4.0, {=0.05, e=4.0 Eq. (37b), are recast in the equivalent cubic polynomial form,
0.018 Galerkin technique Alatxil(a+x)=cy'+ct %+ %P+ ey, (41)
Simulation fori=1,...,4. Notehat, in this case, the minimization procedure
(28) leads to the set of equations
(i) (i) (i) (1) . .
s 0.012 ajq a(12> a(lg; a(l.‘; CS) b(ll)
| I I i i
% T Ay Ay Ay Cg) 7 bg) 42)
v 0.008 - - ay ay cy’ by’ |’
X ) (i) (1)
- - - af C3 b
where
0.004 0 1 (T - .
ajk:?fo X{ dt, J,k:].,...,4 (43)
_________________ and
0
6 7 8 9 g T . o
" b}'):?f ylatx|(a+x)x "Mt j=1,....4. (44)
0
Fig. 2 Rayleigh oscillator, power spectral density of the dis- A standard trapezoidal approximation is applied to compute the
placement response integrals(44), while exact solutions can be found for E¢23).
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Fy(9) Fy(®) Fy(9) Fy(9)
7 ki k, ks k,
C.
qc my _;'Z'C — my ‘(:; E ms3 (;C E my
Gl |____ 2 E 3 E 4 E
Gy (%) o Gl w G . G "

Fig. 3 Four-degree-of-freedom system with cubic damping and flow-induced nonlinearity

For the numerical computations, it is assumed that 4.0 and
w,=8.0. Further,3=0.05, y=0.5,a=0.3, and the following val-
ues are selected for the entries of the matride<C, andK:

Concluding Remarks

A computationally efficient Galerkin or a harmonic balance
technique has been used to estimate spectral properties of ran-

m=1.0, i=1,...,4 (4m) domly excited MDOF nonlinear systems. By expanding the sta-
) tionary system response in a suitable Fourier series, it has been
¢=005 i=1,....4 (4®)  shown that single realizations of the response process can be
k=10, i=234 (4%) readily generated by solving a set of nonlinear algebraic equations

derived by harmonic balance. Specifically, an expeditious solution
andk;=2.0. Figure 4 shows the trajectorg(t) determined by scheme based on Newton’s method has been developed by using
the proposed technique and by a Monte Carlo simulationAfor exact solutions for the Fourier coefficients of the nonlinear terms,
=0.15 and\N=60. It is seen that, after the transient initial discrepwhich are available for polynomial nonlinearities up to cubic or-
ancies, an excellent agreement exists between the proposed teeh- Further, a simple cubicization procedure has been developed
nique results and the simulated data, as the system respowsepproximate arbitrary nonlinearities by cubic polynomials. In
reaches stationarity. The simulated records have been obtainedtiy manner, the method has been made more efficient than a
a standard Runge-Kutta algorithm with a time sfep=0.01. Fig- previous formulation requiring computationally costly use of the
ure 5 shows the power spectral density of the zero-mean respoR&q technique to determine the Fourier coefficients of the nonlin-
X4(t), as determined by the proposed technique and by the Morsgr terms.

Carlo study. It is seen that the two approaches yield virtually Numerical examples have shown the accuracy of the estimates
identical results. However, the proposed technique has been folagh in terms of the response time trajectories and the power
more efficient than the digital simulation, even accounting for thepectral density matrix. From a computational point of view, the
cubicization procedure, E¢42). Similar results, in terms of reli- technique has considerable advantages as compared to digital
ability and efficiency, have been found for the rest of the systesimulation, where the computational costs may become consider-
coordinates; they are excluded for brevity. able due to long transient parts of the trajectories, which cannot be
used to determine the statistical behavior of the stationary re-

0.20
a=0.3, v=0.5 , §=0.05 0008
Galerkin technique
__________ Simulation 7 a=0.3, 'Y=0.5, B-’—OOS
000 Galerkin technique
L Simulation
;21 -0.20 | §
! = 0002+
w
. 1
-0.40 l
! ‘{ i) 0.001
060 3 40 50 p 70 0.000
0 .|
" 20 o 1 2 3 4 5 6 7 8 9

t

Fig. 4 Four-degree-of-freedom system, time trajectories of the
displacement response of mass 3
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Fig. 5 Four-degree-of-freedom system, power spectral density
of the zero-mean displacement response of mass 4
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sponse process. Further, note that when dealing with nonlingg&yix that is, the terms related #2 in Egs.(A4) and (A5), for

problems, the time step must be adequately small to eIimithg1 2 2Nxd.Rudimentary algebraleadsto

numerical instabilities in the numerical integration algorithm, as """ "’ '

well as aliasing when the FFT technique is applied to the discrete . NS .

response record. Qss= Mzx o st m(u\rl—SI_ U, (AL10)
Irrespective of computational advantages, it is pointed out that

Eq. (18), which is derived by the proposed technique, constitutes 7 (|r—s| - A

a nonlinear relationship between input/output parameters. Thus, it Q= | ——VI__+VA |, (A11)

can be treated as a constraint in conjunction with reliability and 20w | r—s "Ir=sl Tris

optimization calculations of randomly excited dynamic systems d

[16]. Finally, it must be noted that the proposed technique h&l

been found reliable for systems with nonlinear damping, for - P R

which a rapid convergence of Newton's method is achieved, re- Qee= ka7 St oy (U g+U7L ). (A12)

gardless of the initial guess for the unknown Fourier coefficients ‘A 200

of the respons¢12]. However, the applicability of the proposed-l-he symbolé,s denotes the well-known Kronecker delta. To de-

technique for systems with nonlinear stiffness must be furthﬁg mine the tésrms involved in EG26), the integrals '

investigated to account for jump phenomena, and presence of aJ— '

ditional harmonics in the system resporidd]. In this regard, T

existing analytical solutiongl8,19 for specific nonlinear systems Pss f z;z; sin(w, t)sin( wgt)dt, (A13)

can be used as benchmarks. 0

T
Acknowledgment PSCZJ ;7 sin(w,t)cog w4t)dt, (A14)
0
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Pcc—f zzycogw,t)codwgt)dt, r,s=12,... N
0

Appendix (A15)

This appendix addresses the evaluation of the integrals of
nonlinear terms involved in the solution of E{.8) by Newton'’s
method. Specifically it is shown that, when the system nonline
ity assumes the cubic polynomial for(@2), the integrals related
to the vectord(a), given by

%St be computed for aniyj=1,2, ... ,2l. Again, recognize that
such integrals are also involved in the evaluation of the entries of
%e Jacobian matrix, that is, the terms relate@'td) in Egs.(A4)

and (A5). Again, rudimentary algebra leads to

T 77 . . . .
lc= fo G(a,t)coq wit)dt, (A1) PSSZZAw[/‘in(urrlfs\iUfLs)Jrlu’Zj(U\zrlfs\iuftrs)]
T w ~ ~
|S=f G(a,t)sin(wt)dt, (A2) + Xy MatzOstlitls, (A16)
0
T where
|=f G(a,dt, (A3) Non,
’ L= > T0m.08, +05.05, + VAU
as well as the integrals related to the Jacobian matfi), 7 & AT Tkeng T Tk Tkng T Tk Tkeng
J fTaG(&’t) Swd)dt A4 f o L S
= —=CO , Zi \/% 1z (1% _ 1% Nz
c 0 0aj Wy ( ) +VkJ.Vk+nS]+k21 _8Aa)[ Uk'UnJ K UkJ.U K
ToG(a,t Sz /Zi Sz )i
JS:f (*)sin(wkt)dt, (A5) +Vk'ans—k+vkj'Vns—k] (A17)
0 (9&1
- and
ToG(a,t)
J= Tdt, (A6) N—ngy -
0 i - N ny Ay N
l,= > ——[UA.0%, _ +04.04  +Va4.Vi
forj=1,2,...,(N+1)d, can be determined in a closed form. 51 Aok Teng s T Tang - e g
First, consider EqsiA1)—(A3). As long as Eq(22) holds, the ng—1
terms in Eq.(25) can be found by determining the integrals Sz )z TNz Nz
q.25) y g g TV VLT Z aaolUe-07
. =1
st:f z; sin(,t)sin( wgt)dt, (A7) Nz 1z R OZi \Zi
0 FOP- U VRV VR, (A18)
T 1 .
QSC:f % sin(w,1)cog wgt)dt, (Ag) With ng=r-+s, ng=|r—s;
° 77 [r—s| -
TA PSC:_ZAQ) /'Lzl _r—s V|#75‘+Vrj+s
Qcc= | z codow t)cogwet)dt, r,s=1,2,...N (A9)
0 [r—s| - - A s
Zj Zj
for anyi=1,2, ...,2l [the superscripN in Z;, which is given as +r“zj( s Vir-g T Viks| [Ttz (AL9)

Eq. (23), here is omitted for breviy Recognize that such inte-
grals are also required in evaluating the entries of the Jacobiahere
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A ™ Ay Aa An AL Al
= E [U Vk+n +UEI'ViJ+n _ViJ'UEJrnS_VE

ng—1

Ui+ 2 5 o [0p Vs #0008 #0002
+VE- 07, (A20)

~ S fr-s| - “y - ~
zZ; Z sz z; z;

J2= ~ m:[ukj'vk+nd+uk'vkj+ _VJ Uk+nd_vk

. ng—1 |r | . . .
Z; Z; Zj Z; Z;
'U|<'+nd]+ 8Aw r— [U' V k+Uk'Van—k+VkJ

"1 Zi \/Zi 1 1Zi .
Ut ViU s (A21)
Pec=5— [1g (08 + 0%, )+ o, (07 + 0%, )]
CCT oA W Mz Mg r+s) T Mz g r+s
o ~ ~
+ E:U*zi/’*zj Orst 1+, (A22)
where
N-ng
3= 3, g l03 Ul + 03 O + V-0, 4
ng—1 -
/Zi Nz N1z Nz 170 Zi \sZ,
’Vk+n]+k: 8Aw Uy Unjs—k"'ukJ Uns—k_vk’vnls—k
~Vi- Vi ] (A23)
and
N—ny -
3 1z 112 "z Z; /Zi /2 /Zi
J2= ~ m[uk'UkJJrnd"‘Uk Ui, TV Vi TV
ng—1 -
Z; "1z 2 "1z 1z IRV-IRVE
Vk+nd]+k21 8 w[Uk Unld—kJrUkJ'Und—k Vi n'd—k
—V (A24)
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models of mechanical systems using state space realizations identified via dynamic tests.
R. Betti It is shown that even when the system is insufficiently instrumented with sensors and
actuators, it is still possible to create physically meaningful reduced order mass-damping-
stiffness models that incorporate measured and unmeasured degrees of freedom. It is
further discussed that certain assumptions, such as having a diagonal mass matrix or
having classical damping in the system, allow one to develop alternative reduced order
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1 Introduction with developing formulations that address the problem of insuffi-
cient instrumentation, and attempts at providing new methods

A We”"“.‘OW” technlq_ue employed in madeling the qynam'cﬁased on identified state space models that utilize both damped
of mechanical systems is the use of second-order matrix dlﬁereéhd undamped modal information

tial equations. In such a formulation, the coefficient matrices con-1pa following sections are devoted to the review of the full

tain the physical mass, damping, and stiffness parameters of 8o, modeling problem, effects of insufficient instrumentation,
system, which in turn affect the modal vibrational parameters sugfssip|e reduced order modeling schemes, and alternative formu-
as the natural frequencies and mode shapes. The construction s that can be developed by considering frequently employed
mass-damping-stiffness model based on material properties aRdumptions such as having a diagonal mass matrix and/or a clas-
the system's geometry, as done in finite element analysis, iSsRally damped system. The proposed methodology/solution con-
relatively straightforward procedure and is widely employed igjsts of three well-defined phases. First, a first-order model of the
predicting the response of a structure to prescribed inffats  system is determined using the recorded input-output data. Once a
ward analysis The identification of such a model from the meafirst-order model has been determined, the next step is to construct
sured dynamic response, on the other hand, has proven to bgétransformation matrix that relates the arbitrary coordinates of
tough challenge, and it is often referred to as tiinean inverse the identified state space model to the set of modal coordinates
vibration problem.” that are derived via the symmetric eigenvalue problem formula-
This problem has been addressed by various scholars in the gast. The construction of such a transformation matrix has been
as evidenced by the works of Agbabian et[&l, Mottershead and shown to be possible if there {gt least one co-located sensor-
Friswell [2], Berman[3], Baruch[4], Beck and Katafygioti$5], actuator paif[11,12). With the use of this transformation, it will
Alvin et al.[6,7], Tseng et al[8,9], and Balme[10]. Recently the be shown to be possible to evaluate some partitions of the com-
authors have presented a solution to this problem based on idplex eigenvector matrix of the symmetric eigenvalue problem.
tified state space realizatiof{d.1,12). This solution has proven to Utilizing such information, the last step consists of constructing
be more flexible and general than the previously available soligduced order mass-damping-stiffness models based on the iden-
tions of the problem utilizing state space realizations, and it héi§ed complex eigenvalues and partitions of the complex eigen-
been used eﬂective|y in estimating the physica| parameters \(ﬂctor matrix. It will be ShOWn- in the Iattgr sections that such
various structural model§13]). On the other hand, even thoughreduced order models are physically meaningful, and furthermore,
the requirements on the number of available sensors and actuatBfé they can be analytically related to the full order matrices. The
for a full order identification has been improved with the aforéast section is devoted to the presentation of a numerical example
mentioned solution, the question of obtaining reduced order moghich illustrates the applicability of the solution and the formula-
els in the absence of full instrumentation has not been fully invelons developed in this study.
tigated yet. A noteworthy exception to this claim is the study by
Alvin et al.[7] in which the authors have provided a methodology
that_ utilizes undamped second-order frequencies and mass PPI- Statement of the Problem
malized mode shapes to construct reduced order mass, dampin

and stiffness matrices. The current study therefore is concerned-onsider anN degree of freedom viscously damped linear
structural system, subjected toexternal excitations. The equa-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tions of motion for such a system can be expressed as

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . .

CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 5, Mq(t)+ Lq(t)+KCq(t)=Bu(t), Q)
2002; final revision, Jan. 28, 2003. Associate Editor: N. C. Perkins. Discussion on the

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenwhereq(t) indicates the vector of the generalized nodal displace-

Mechanical and Environmental Engineering University of California—Santa Bafs ; - . . ot
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months alltgrents’ with () and (") representing respectively the first- and

final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- S.econdl'order dgrivativgs with respect to _time- The veafoy, of
ICS. dimensionr X 1, is the input vector containing theexternal ex-
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citations acting on the system, wite Ré™" being the input and with this scaling, for aroportionally damped systerthe real
matrix that relates the inputs to the DOF’s. The matrige¢ and imaginary parts of the components of these complex eigen-
e R&N £ RN and KC e R&™N are the symmetric positive Vectors are equal in magnitude. By using the transformat{oh
definite mass, damping, and stiffness matrices, respectively. Let@b¢'(#A)T17{(t), and pre-multiplying Eq(3a) by [¢(4A)T],
assume that onlgn output time histories of the structural responséhe equations in modal coordinates can be written as

are available, so that the measurement vegtoy, of dimensions :

mx 1, can be written as O LO=AL + ¢ Bu(v), (6a)

YO =[(Cpa(t)" (C,a(t)" (Cal(t)]T, @ y(t)=Cpihl(t). (6b)
where the matrice€,, C,, andC, relate the measurements to4 Determination of a “Reduced” First-Order Model of

positions, velocities, and accelerations, respectively, and the g$ya System

perscript (J denotes the transpose. o .
While the cases of a complete set of sensans-(N ([6])) and Here we assume that a state space realizétiosome arbitrary

of a complete set of actuators< N ([8,9])) have been previously basig of the dynamic system under investigation has been ob-

addressed, the “more general” case of a sufficient number of sdfined using general input/output data. Such a realization can be
sors and actuatorsn(+r=N+1) with one co-located sensor-€XPressed as

actuator pair has only recently been studied by the authors X(t)=Acx(t) +Beu(t),
([11,12)). In these recent studies the basic assumption is that, at (7
each degree of freedom of the system, there is either a sensor or y(t)=Ccx(t)+Dcu(t),

an actuator with at least one degree of freedom having a Ohere A~c RN B c REV C.ec RE™N andD. e RE™
C » PC ’ C ’ C

located sensor-actuator pair. In the present study, this assumptétpg the continuous time system matrices. In this study, an ERA/

is removed and the analysis focuses on the case where, still ¢ D based approach, as discussed by Juang and co-workers

sidering a co-located sensor-actuator pair, a sufficient number%‘é 16 and Lusand co,-workers[17 1§ ig considered for the

Svl?l??)oersd:ngezgtg?ﬁ‘?;se(Ijsorr;mof/v?t\;]alrﬁbi tlhee(rrzj;\lezslgrsﬁoih:; t2:;rl'fatidentification of the discrete time system matrices of a state space
9 alization, and these discrete time matrices are converted to their

This is a common scenario in real life applications where onlyoqviny 5, time counterparts using the zero-order hold assump-

limited testing and measuring equipment is available. HOWBV(?{On. Here we assume that the external excitation is sufficiently
even with these limitations, some dynamic characteristics of ti%

structural svstem can be retrieved and a “reduced” second-or h so that all the vibrational modes of the structure are ad-
Y ” " . : uately excited. The advantages of using the ERA/OKID based
model of the “larger” structural system can still be obtained.

approach arel) no data manipulatiofintegration or differentia-
tion) is needed, and2) it has proven to be quite effective in
3 Transformation to a First-Order Modal Model accurately identifying the dynamic characteristics of complex sys-
tems using very limited sets of sensors and actuators, even in the
presence of noisé_us [11]). Hence it is very appropriate for the
rpose of this study, which is to analyze the case when the num-
er of sensors and actuators available is much smaller than the
number of degrees of freedom of the structure.
By considering the transformatiot{t) = ¢ 6(t), the continuous
time system of Eqs(7) can also be written in modal coordinates

A well-known fact from control theory is that it is possible
(and, in some cases, conveniend transform the system of
second-order differential equations of motion into a system
first-order differential equations by introducing a state vect
z(t)=[q(t)Tq(t)"]". As discussed in the works of Ly41] and
De Angelis et al[12], the equations of motiofil) and the output
equationg2) can be conveniently rewritten as

as
L M < 0 .
o ol o fao=[glun, @ B(H)= A’ 6(1)+ ¢~ "Beu(t), ESZ
y(1)=Ceph(t), 8
y()=[C, 0z(t), (30) c¥

where the matrixA’ contains the Rl continuous time eigenvalues
where, for ease of exposition, we have considered only positignthe identified state space model, andof size Nx 2N, is the
measurements in the output equati@). It should be pointed matrix of the corresponding eigenvectors. The mabixhas been
out, however, that the following results are valid for any type odmitted in Eq.(8b) because it is independent of coordinate trans-
measurementgpositions, velocities, or accelerationsas dis- formations, and its presence or absence does not in any way alter
cussed in Refd.11], [12]. The advantage of rewriting EL) into  the development of subsequent results. At this point, it is notewor-
Egs.(3) is that now the associated eigenvalue problem in the Staff) that, since the dimensions ap{ 'B) are 2Nxr and those of
space formulation preserves its symmetry, and this yields a 9re@l. o) aremx 2N, the modal model represented in Egb) can
advantage in posing the identification problem, as will be showgnjy” he used for sensors and actuators placed at locations speci-
in the following formulations. By indicating withyn.on  fied by the experimental setup used in dynamic testing. This limi-
=[1h> -~ on] the matrix containing the eigenvectors of th&ation will be overcome by the proposed approach, since it will
complex eigenvalue problem allow us to expand the input/output mapping to include “new”

(NMANLHIC) ;=0 () sensor/actuator locations.
I

and with A,y « oy the diagonal matrix containing all the complex
eigenvalues\; (i=1,2,...,N), itis possible to rewrite Eqg3) 4.1 |Identifiable Partitions of the Complex Eigenvector

in a modal form. Since the eigenvectafs(i=1,2,...,N) can Matrix. If the first-order system of Eq$7) was identified using
be arbitrarily scaled, the scaling choice considered in this studydsta that actually came from the second-order model of(Eq.
such that(see Sestieri and Ibrahifi4], Balmes [10]) the models represented by E¢8) and(8) are different models of

T the same system, with the same set of eigenvalues. Therefore
U4 L My — (5a) there must be a transformation matrik that relates these two
YA M 0 YAl representations, so that:
ST 0 |y TN T=A, (9a)
=—A, 5b 1 -
[I/IA} [ 0 —MHWJ (50) T 1o Bc=y'B, (9b)
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CeeT=Cy. (9c) notinstrumented with either a sensor or an actuator, however, the
. ) corresponding components of the complex eigenvector maitrix
The matrixA, which belongs to the state space model of Eqgannot be evaluated since it will not be possible to set up(E2).

(6), is always diagonal since it is obtained via a symmetric eigegr £q.(13). For a detailed discussion of the aforementioned meth-
value problem. On the other hand, the matix of Egs. (8) odology, the reader is referred to the presentations in the works of
comes from an asymmetric eigenvalue problem, and it is knovy_r@J§ [11] and De Angelis et a[12].
that diagonalization is not always guaranteed in an asymmetricopce all the identifiable rows of the matrik have been com-
eigenvalue problem. In this case, however, since the asymmemgrted using either Eq(12) or Eq. (13), it is convenient to rear-
eigenvalue problem is in fact derived from the symmetric eigeiange them by moving all the known rows at the top of the matrix
value problem, there will always exist a set of eigenvectors thgtyhile the unknown rows are moved down. This is equivalent to
will yield A’=A (see Appendix A for a proof of this statement rearranging the vector of the degrees of freedom in “known” and

Consequently, the transformation mat@is also a diagonal ma- «ynknown” DOF's. The eigenvector matriys can then be repre-
trix, denoted asZ=diagf, t, . .. tpy). Furthermore, it is as- gented as

sumed that the structure is properly constraiiettiich generi-

cally is the case in a modal testing situali@o that there are no ro - - "
rigid body modes. In addition, the input and output matritBs ‘fl’l ’f’l’z ‘f’leN
andC,, respectively of the finite element model, which contain W oo Yo
information about the actuator and sensor locations, are assumed . . . .
to be known.

The identification of the transformation matrix is contingent o=| a1 a2 v Gaan | (14)
upon the existence gt least one co-located sensor actuator pair. - = —
To briefly summarize the procedure presented by[lld$and De Uni11 Yne12 0 Uneia
Angelis et al[12], let us assume that there is a co-located sensor- : : : :
actuator pair at the generith degree of freedoniDOF). The — — —
co-location requirement may be written as L N1 N2 T Unen

Cy(row corresponding to thgth DOF, ) Wherefpi,j denotes the “known” component of thgh mode at the

=(4"B(:,column corresponding to thgth DOF))T. ith degree of freedom, whilg, ; denotes the “unknown” compo-
(10) nent of thejth mode at theékth degree of freedom.

For ease of presentation, we shall resort to the notati¢n:) to 42 Expanding the Input-Output Mapping.  Having deter-
denote the row of a generic matrit that corresponds to thigh ~Mined then rows of the matrixys (denoted byy), it is now
DOF, and we shall denote by (:,j) the column of that matrix POssible to construct a new state space model, which can also
corresponding to thith DOF. Hence, the co-location requiremenpredict the system’s responseaatuatorlocations for excitations

is given byC,(j,:)¢=(¢"B(:,j))", or, with the use of the trans- applied atsensorlocations. This new system is an improvement

formation equations, on the initial first-order system, for which the actuator and sensor
locations were fixed and limited to the initial test configuration.
Celj)eT?=(e Bc(:,iNT, (11) If a certain degree of freedom, e.g., jie DOF, has an actuator

| placed on it, then the contribution of the excitation to the state
uation is through the terga’ B(:,j). Analogously, if a sensor is
ced on thgth DOF, then the state vector is related to that
1Tput through the tern€(j,:)y. By assuming that sensors are
aced at the DOF's where the actuators are placed and that ac-
gtors are placed at the DOF’s with sensors, a hypothetical “ex-
anded set ofrf+r—n.) co-located sensor-actuator pairs” can

which yields N equations for the B unknowns in the diagonal
matrix Z- It should be noted that the co-location requirement doé
not need to be satisfied in a strict sense. For example, in the ch
of a rigid body, such a requirement may be rephrased in alter
tive forms by properly combining the inputs and outputs. In an
case, it is evident that the total number of available sensors &
actuators has no bearing on the identifiability of the transform - . : .
tion matrix, rather it is in the determination of the eigenvecto € created. I_:c?r each QfTSUCh pairs, the co-location requirement is
matrix ¢ that the limitation imposed by the insufficient set ofdiVen bYCp(i,:)=B(:.j) , for j=1to (m+r—n). This would
sensors/actuators appears. Some components of the nfatein  20W US to create new input and output matrices, nanglgnd

be determined using the information contained in the input aié . that can be used in a new state equation, which can be written
output matrices. When there is a sensor atkiheDOF, then the as

kth row of the matrixy can be evaluated via E¢9c), which may _ .

be written as {0 =AL0)+y"Bi), (152)

p(k,:)=Cc(k,)) T (12)

() =C, o), 1%
On the other hand, if there is an actuator located aktheDOF, vt P4 (1%)

then thekth row of the matrixys can be obtained using E(b),  where the quantities with"() are related to the degrees of free-
e, dom with either a sensor or an actuator. It is important to note that
Ve (F-1,.-1R (- LT the new input vectofi(t) and the new output vectgr(t) now
Yk)=(T "¢ "Be(:,K) (13) contain information about all the active degrees of freedom,
Clearly, this argument can be applied to determine “onty” providing a more general input/output mapping. This is to say that
=m-+r—1 rows of the eigenvector matri% assuming that there (1) it is now possible to predict the output at any of the DOF'’s that
is only one co-located sensor-actuator pair=(Mm+r —n. if there did not have a sensor but had an actuator placed on then{2and
aren, co-located sensor-actuator pairk is important to notice if it so happens that the system is subjected to a new input applied
that, in correspondence of a degree of freedom with either a se-any of the aforementionedactive DOF’s, it is also possible to
sor or an actuator, the entire rdaorresponding to that degree ofaccurately predict the response at any of those locations. This
freedom of the eigenvector matrixy can be evaluated. This is operation can be seen as the time domain equivalent of building
equivalent to saying that, at each of these degrees of freedom, tive transfer function matrix of the system using the symmetry
corresponding components of all theN2complex vibrational property of such a matrix. If, for example, one had identified the
modes are determined. For the other degrees of freedom that @mponents of the transfer function matrix that relates ithe
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input to thejth output, then it is also possible to obtain immediwith the partitions defined analogously. However, since this re-
ately the component relating a hypothetical output atithdOF duced mass matrix is obtained only with the partitions of the
to a hypothetical input at thgh DOF. larger mass matrix and does not involve any contribution from the
stiffness matrix, it is in general quite different from the reduced
mass matrix one would get using the Guyan reduction. In fact,

- ; ; :_ these reduced order matric& and M are also known as the
5 Retrieving the Mass, Damping, and Stiffness Matri Schur complements of the partitioks,, and M, respectively.

ces of the “Reduced Order Model” Wi_th regard to the damping ma}trix, its reduced form can_be
5.1 The General Case. Having determined th@ rows of obtained from Eqgs(16), by accounting only for the known parti-

. T . . tions of ¢ and M. This reduced order damping matri®, of
E:r:;]matrlxw (denoted byy), it is now poss_lble to dete'rmlne a{ji@ensionsnxn, is symmetric and can be expressed as
pact form of the mass, damping, and stiffness matrices relate
to the reduced model. To this end, let us consider the general L=—MyPAZY M, (23)
expressions of the mass, damping, and stiffness matrices of the . _ , . )
larger system which are obtained by imposing the orthogonalifyere the information about all teé DOF's of the “larger” sys-
conditions given in Eqgs(5). As shown in Refs[10] and[12], tem have been included throug®t, ¢, andA.

these matrices can be expressed as 5.2 Block Diagonal Mass Matrix Case. If the system un-

M=(pAy") L, (16a) der consideration has a block diagonal mass matrix, it is possible
- to provide new interpretations to the results of the previous sec-
L=—MpAY' M, (160)  tion. Let us first note that a block diagonal mass matrix may be

IC=—(yA "Ly~ (160) partitioned as

Since the mass and stiffness matrices have similar structures, let M= Man 0
us first analyze the reduced form of the mass and stiffness matri- 0 My
ces. Using the subdivision of the matrixpresented in Eq14), it .

is possible to express the matricdd andC in partitioned forms and that for this case Eq22) leads to

as B KM=[IAGT] 1= Moy, (24)
N A
YAYT YAy

ALy ATyt erefore, for a system with a block diagonal mass matrix, the
AYYT gAYt Therefore, f t th a block d | trix, th
EA’H}T ZAﬂZT subpartition of the mass matrix related to the instrumented DOF's

can be directly and exactly evaluated using the available complex
(17)  modal information. Similarly, since in this case the expression for

where ¢, of dimensionnx 2N, and , of dimension —n) the damping matrix can be written as

X 2N, are the submatrices af corresponding to known and un- C C
known degrees of freedom, respectively. By employing the in-g—=| " ”“}
verse of only the known portion oM ™2, it is possible to_obtain Lun Ly
a “reduced” order mass matrix of the structural syst , of S a2h s
Gimango order ystemt ) [Mnn 0 } PAZYT AT {Mnn 0 }
. L - 0 M TA—20T  A2,T 0 M, |
M=[yAy" L (18) wl[ AT YA uu
- . . ~ 25
Similarly, a reduced ordarX n stiffness matrix of the systeni, . . (25)
can be obtained as the partitionL,,, can also be directly and exactly evaluated as
]AC= —[1:0/\_1;&1—]_1_ (19) L= _MnnlpAzlpTMnn- (26)

These two matrices are symmetric and are related to the general € partitions of the stiffness matrix, however, are not so

Nx N mass and stiffness matrices of the structural system througfi@ightforward to evaluate, and only approximate results may be
a static condensation relationship. In fact, from Hd8) and(19), ~0btained. In order to clarify this comment, let us go back to Eq.

both matrices are presented as the inverse of a symmetric maffR) and rewrite it as

which itself is a partition of a larger matrix. If we now rewrite the SICY— AYTMPA=—A. 27)
partitioned form offiC as
N PN — 4 Premultiplying Eq.(27) with /A and postmultiplying it withA "
B Knn Kny B YA TyYT l,//AlzjfT} 20) leads, with the help of the relations in Eq&6), to
Kun Ky YATIYT gAYy K== MIA M+ LM L (28)
then what we have denoted A= —[{pA*lpr]*l is in fact and, using the partitions of the mass and damping matrices, Eq.
- . (28) may be rewritten as
K== Ko,y Kuinl- (21)

_ -1 -1 TA3TT
It is important to note that the expression in E2{l) is identical to Kon=LanMan Lot LouMuy Lon™ Mun AY Mnn(~29)
an expression we would have got if we had considered the static ) ) )
condensation of the matriC by employing the DOF's with either Clearly this expression can not be evaluated exactly sige,
an actuator or a sensor as the “independent” DOF’s, and tHtuu, and Ly, are unknown quantities. The “closeness” of this
DOF’s with neither an actuator nor.a sensor as “dependéah- estimation naturally dep_ends on t_hg contrlbuthn of the u_nknown
densedl DOF’s. This expression ok is also identical to the re- term, and unfortunately it is not trivial to quantify due to its sole
duced stiffness matrix one would obtain using the Guyan redu¢éPendence on unattainable parameters of the system.
tion ([19]). Because of the similarity in the structure &1 and
IC, the first argument holds true also for the mass matrix, so that5.3 Diagonal Mass Matrix Case With Mass Normalized

the reduced mass matrix corresponds to Normal Modes. The discussion until now has focused on the
- 1 complex eigenvectors and eigenvalues which are a direct product
M=[M—= My M Ml (22)  of the state space formulation. The normal modal parameters, on
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the other hand, are also widely used in modal analysis, and in this
section we present a new methodology that utilizes such informa-
tion to construct partitions of the mass, damping, and stiffness
matrices.

The eigenvalue problem for the so called normal modal param-
eters is given by

MPQP=1Coh, (30)

where Q?=diag(23,03, . . . Q2) is a diagonal matrix containing
the squares of the undamped natural frequenciesgang, is the Kk.c
eigenvector matrix whose columns are the noruadampedl L
eigenvectors of the system. Here we assume that the eigenvector:
are mass normalized, i.e., that they are scaled such that

dTMop=1, $Ks=02 (31)

The determination of these normal modal parameters from experi-
ments is possible for classically damped systems; the reader is L X kge, kye,
referred to the work of Alvin et al[7] for a brief discussion of

candidate procedures. Here we employ the same assumptions as Fig. 1 4 DOF lumped mass system

Alvin et al. [7] regarding the availability of these modal param-
eters, and assume th@t the system is classically damped, so that
the undamped eigenvalues and modal damping percentages can be Te-1yTo2vyelT (1o 1vyTo2vael T
easily evaluated from the continuous time poles of the identifiedy- — Koan ’c”“} ES va VSEJ ES Ve VSE
state space modéhas discussed, for example, by LLEL]), and Kin Kyl [USTWVTOQ2VYSUT us tvTQ2vsUT
that(ii) the mass normalized undamped mode shapes are known at (36c)

the sensor locations. It should be emphasized that, since the whole eigenvector ma-

t_#smg thefe normal Lnodal pflrarp(zters_, the mass, damping, g ¢ is not available, it is in general not possible to determine the
Stliness matrices can be constructed using matricesU, U, S, andV. It can be shown, however, that if the

M=¢"Top"t L£=¢"TE L, K=¢ 02! (32) system has a diagonal mass matrix, then the partifisn*U" is
identically equal to the Moore-Penrose pseudoinverseg,oite.,

whereé€ is the damping matrix in modal coordinat@sagonal for A
a classically damped systenif, on the other hand, the system is VS IUT= ¢, (37)

not fully instrumented, then it will not be possible to evaluate the ~

whole eigenvector matrix, and hence Eqg32) will not be ap- Whereg' denotes the Moore-Penrose pseudoinvésse Appen-
plicable. It will still be possible, however, to employ alternatélix B for the proof of the statementTherefore the partitions of
expressions to estimate partitions of the mass, damping, and sfiffe mass, damping, and stiffness matrices corresponding to the
ness matrices, provided that the system has a diagonal mass ki@wn DOF’s can be exactly evaluated using

trix. To investigate this claim, let us start by partitioning the ei- T ot T o

genvector matrix such that Mun=(9) (), Lnn=(¢") E(S)),

p ICon= (") TQ*($"). (38)

}1 (33) It should be noted that these expressions complement the re-
) sults presented in the work of Alvin et 4], wherein the authors
V_vhere Dnxn is the partition of¢ that can be determined, andhad provided expressions that yielded reduced order matrices

b« denotes the partition that can not be evaluated due %wlvalent to ones that would be obtained via Guyan reduction.

insufficient instrumentation. Furthermore, the singular value de-AS. a final note, it should _be mentioned that redqced orde_r
composition of¢h is given by physical matrices, obtained via the procedures described herein,

do not completely reflect the full dynamics of the system, i.e., the

b OsvT response of the measured/excited DOF's as predicted by the re-
¢=|—|=USV'= sV’ (34) duced order system will not be equal to the true response of the
¢ respective DOF’s of the full order model. This problem is com-

where Uy and Vyyxy are real unitary matrices containing themon to all reduction schemes, whether they start from an identi-
left and right singular vectors, anyxy is a diagonal matrix fied model or an analytical model, and is mainly due to the fact
containing the singular values. Using this decomposition, the iHat the reduced order matrices lead to a different eigenvalue

verse of¢ can be expressed as problem than that of the full order matrices, and that modal prop-
R . erties of the full order system are not preserved in this new eigen-
¢ 1=VvsS UT=[VvsS UT VS U] (35) value problem. Therefore it is best to use the information obtained

) ) ) via the proposed schemes for obtaining reduced order models in
and, using Eqs(32), the expressions for the mass, damping, ang@vestigating the partitions of the full order matrices, e.g., in
stiffness matrices can be written as health monitoring or model updating. In order to accurately pre-
dict the structural response, one should use the state space model

Cle-yTyelT  (1e-iyTyer )T
Z[Mnn MHU}Z ES Vivsu ES v VSB represented by the system in E¢s5).
My My [ustvTvsuT us vTvsuT| _
(36a) 6 Numerical Examples
C C Us vTevsy™ Us vTevsyT 6.1 4-DOF System. In order to present the various stages of
c:[ nn ”“} == o= — | the proposed approach, let us consider a brief numerical example.
Ly, Ly |USWVTEVSUT USs vTevsuT The system we study is the 4 DOF lumped mass model shown in

(36b) Fig. 1. The dynamic data to be used in the identification is ob-
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Table 1 Actual and identified continuous time poles of the the rich input employed in the test, it was in fact possible to

model. Re () and Im () refer, respectively, to the real and imagi- identify all the poles of the system. Starting with this initial
nary components of the poles. model, the next step is to find the matriX that allows us to
= transform the equations in Eq®) to the modal coordinates of the
Actual Identified S - .
symmetric eigenvalue problem given by E¢8). Since the sys-
Re{) Im(\) Re(\) Im(\;) tem has a co-located sensor-actuator pair located at the second
20077 “1044 0077 "1.044 DOF, it is indeed possible to identify the transfo_rmation matr_ix
-0.077 +1.244 —-0.077 +1.244 and execute the transformation. Furthermore, using the equations
—0.170 —1.838 —0.170 —1.838 in the transformed modal coordinates, the partitions of the com-
02 iy 03 iy plex eigenvector matrix corresponding to the instrumented DOF’s
_0263 12978 —0.263 12978 (the first and the second DOF's for this exampieay be evalu-
—0.281 —-2.353 —-0.281 —2.353 ated. In fact, in this case we get=[ 4} dotbs ais aby ],
—0.281 +2.353 —0.281 +2.353 where the superscrigt) denotes complex conjugate, with
~ |0.1613+;0.1613 - | 0.1054+0.1054
17/0.2515+0.2515" 271 —-0.1288-70.1288"
tained by subjecting this system to a white noise input at the _
second DOF, and displacements are assumed to be measured at @3=[0'139$J0'1393; A4= 03026—]0'3027
the first and the second DOF's. It should be strongly emphasized, 0.0560t0.056 0.0608t0.0608

. . te that the real and imaginary parts of the components of these
and/or acceleration measurements. The reader is referred to ginary p P

; - nvectors are equal in magnitude; this phenomenon is due to
work§ of LU=S.[1.1] and De Angelis et al.12] for a thorough dis- the particular scaling choice expressed in Efsand it is indica-
cussion of this issue.

. tive of the fact that the system is classically damped. At this point,
The system properties are chosen as folloMs;=0.8, M, ; ;
—2.0,My=1.2,M,=0.6 ki=1.0 for =1, 4, 5, 7.k =2.0 for i we have all the information we need to evaluate the reduced order

=2, 3, 6, 8, anct;=0.1Xxk; for all i. Note that this choice of the matrices. Starting with Eq$18) and (19), we have

viscous damping coefficients leads to a classically damped sys- N o 0.8 0.

tem, thereby allowing us to discuss all the formulations developed M=[¢A¢T]1=[ j (3%)
in this study. With these parameters, the mass, damping, and stiff- 0.0 2.

ness matrices can be constructed as

however, that the methodology is also applicable with velocila(%\E
¢

& AT 375 -1.25 -
08 0 0 O [4A™ 4] 195 412l (3%)
0 2 0 O . . . . -
M= : Note that, since the mass matrix was diagonal, the identified re-
0 0 12 O duced order mass matrid is nothing but the X2 partition
0O 0 0 06 corresponding to the first and the second DQF&, M.,,), and
this result was to be expected due to EB4). The identified
04 -01 -01 0 reduced order stiffness matriiC, on the other hand, is exactly
01 05 -01 -01 equal to the matrix one would get by statically condensing the
L= . third and the fourth DOF'gi.e., Guyan reduction the result of
-01 -01 04 o such a reduction would be given by the formuliC,,
0 -01 0 0.3 — IC IC IC,, With the partitions presented above. Analogously,

a reduced order damping matrix can be obtained via(E8). as
4 -1 -1 O

105 -1 Z-—Kagntiiha-| OO
=l21 -1 4 ol —-01 05
0 -1 0 3 Once again, owing to the diagonal nature of the mass matrix, this

reduced order damping matrix is nothing but the22partition

corresponding to the first and the second DOF’s, L& L, as
was expressed in E@26).

Note that the partitions of the stiffness matrix defined in &)
are given for this system and instrumentation set up by

y— -1 0 An alternate expression one could obtain for a reduced order
Kon= }; K= , stiffness matrix would be with the use of E@9). In fact, using
-1 5 -1 -1 this equation, one could get an estimate of the partif@g, by
-1 -1 -4 0 ignoring the contribution of the unknown terd, M Ly,
Kun:[ ; uu—[ } which in this case leads to
0o -1 0 3

The partitions of the mass and the damping matrices are defined Jceste 399 -101
analogously. "M —-1.01 4.98)

The initial stage in the proposed methodology is the identifica- ) . o T .
tion of a first-order model of the system. Using the OKID/ERAEVen though this estimate is in error, it is interesting to note that
approach([16,18), a single input—two output system is easilythe error is in fact quite small for the system under consideration.
identified. The success of this identification may be easily judgéd general, the “closeness” of this estimate will naturally depend
by comparing the actual and identified values of the continuo@8 the nature of the neglected term as discussed in the previous
time poles, which are presented in Table 1. sectlons._ _ _ -

Clearly, the OKID/ERA algorithm has been extremely success-As a final note, let us consider the estimates we could obtain
ful in realizing an initial state space model even with two outputdsing normal modal parameters. With the instrumentation at hand,
and a single input, as evidenced by the exact agreement betwietould be possiblesee Alvin et al.[7] and Bernal and Gunes
the actual and identified values of the poles. Also note that wifR0]) to get the partitionp of the mass normalized eigenvectors as
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E=2 x 106 kgf/cmz' A=1cm2 L=200cm Table 2 Comparison of identified damping factors and natural
! ! frequencies for damaged and undamaged model for the truss

B 2 4 6 D system
Undamaged Damaged
L Mode  &(%)  f(Hz) &%) T (Hz)
1 2.3243 0.4709 3.2772 0.3972
2 3.4069 0.9513 4.1605 0.8354
3 3.5979 1.0212 3.6028 1.0148
4 4.3500 1.2862 4.4715 1.2537
. 5 5.1973 1.5739 5.2079 1.5718
Fig. 2 Example truss structure 6 5.7328 1.7525 5.7328 1.7525
7 6.6063 2.0408 7.0593 1.9999
8 6.6756 2.0930 6.7820 2.0913
9 7.5120 2.3369 7.9273 2.1667
10 7.6604 2.3853 7.6316 2.3705
= —0.3598  0.2858 —0.4207  0.9284 11 8.6475 2.7058 8.6960 2.6528

Since the second-order eigenvalues and modal damping ratios can

be evaluated directly from the continuous time poles of the iden-

tified first-order systenfor an explanation of the procedure, seejonal modes, as shown in Table 2. The damping and frequency
for example, the study by Lust al.[18]), the second-order ma- \4jyes differ for the undamaged and the damaged structure due to

trices £ and 2 may be easily constructed as the structural change. Analogous changes appear in the identified
1.553 0 0 0 reduced(9x9) stiffness matrix for the two cases, as presented in
Table 3. By comparing these two matrices, it is possible to iden-
, | 0 3407 O 0| tify the elements that have suffered structural damage: here it is
0= 0 0 5.257 o | clear that all the stiffness coefficients related to nodprésented
in bold face are affected by the change. This provides a useful
0 0 0 561 indication about the location of the damaged area.
0.1553 0 0 0 With regard to th_e mass a_nd damping me_ttrices, the idgntified
' reduced mass matrix is identical to that obtained from static con-
0 0.3407 0 0 densation of the mass matrix of the entire system while the re-
= 0 0 0.5257 N duced damping matrix comes from the elimination of appropriate
' rows and columnsin this case, the 10th, 11th and 1Rfrom the
0 0 0 0.561 general damping matrix.
Hence, using Eq¥38), the partitionsM.,,,, L, andiC,,, can )
be evaluated as 7 Conclusions
08 0. 04 -0.1 In this study, the authors have derived various formulations
Mnn_{ 3; nn—[ }; regarding the construction of reduced order mass-damping-
00 2 -01 05 stiffness models from identified state space realizations. In par-
40 —1.0 ticular, it has been'shown that o . '
K:nn_[ (1) For nonclassically damped systems, it is possible to retrieve
-1.0 50 statically condensed versions of the mass and stiffness ma-
and clearly these identified matrices are identically equal to their ~ tTic€S. Such a condensation treats the instrumented DOF's
respective actual values. (|nstrument'a}t|on in the form of acceleration, \_/eIOC|ty,
and/or position sensors and force actugtass the “inde-
6.2 Applications for Health Monitoring.  To briefly inves- pendent” DOF's, while the remaining DOF's are treated as

tigate the applicability of the proposed technique to structural the “dependent” DOF’s and condensed.
health monitoring, let us now consider a second structural system(2) If the system has a block diagonal mass matrix, it is pos-
which is represented by the truss shown in Fig. 2. The material  sible to exactly construct the partitions of the full order
and geometric properties of the various elements are reported in  mass and damping matrices corresponding to the instru-
the figure while the values of the lumped masses arg=mg mented DOF’s. Furthermore, it is also possible to obtain an
=100Kgm and my=mz=m,=ms=200K gm. For this ex- estimate of the partition of the full order stiffness matrix
ample, it is assumed that the system is classically damped. Such a corresponding to the instrumented DOF’s, although this es-
truss is subjected to three applied random forces, two of which are  timate is not exact.
acting in the horizontal directiofat nodes 1 and)5and one is (3) Provided that the partition of the mass normalized eigen-
applied along the vertical directioft node 4. vectors corresponding to the instrumented DOF's is avail-
For the case of a limited set of sensors, let us assume that the able, it is possible to exactly identify the partitions of the
displacements along the horizontal direction have been measured mass, the damping, and the stiffness matrices correspond-
at nodes 2, 3, and 4 while the vertical displacements have been ing to those instrumented DOF's for classically damped
measured only at nodes 1, 2, 3, and 4. Itis clear that, in this case, systems with diagonal mass matrices.
the co-located sensor-actuator pair is the one corresponding to th&he theoretical presentation has been supplemented with a nu-
horizontal direction at node 4. To monitor the structural health afierical example that illustrates the applicability of the proposed
such a truss system, we consider two configuratighsthe “un-  methodology and various issues regarding the formulations devel-
damaged” configuration, in which the structure is assumed to loped in this study.
as previously described, arid) the “damaged” configuration, in It is anticipated that the methodology presented herein may be
which a structural elemerit.e., 6-O has been removed to simu-applied to various problems in mechanics including finite element
late the effect of damage. model updating and health monitoring of systems with insufficient
Using this input-output sets, the identified first-order undanmnformation. These issues and other investigations such as the ef-
aged and damaged models still show the contribution of 12 vibriects of noise perturbations on the identified parameters are the
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Table 3 Comparison reduced stiffness matrices for undamaged and damaged truss system

2.707 0.000 0.000 0.0061.000 0.000—0.354-0.354 0.000

0.000 1.707 0.006-1.000 0.000 0.006-0.354-0.354 0.000

0.000 0.000 2.707 0.0080.354 0.354—1.000 0.000 0.000

0.000—-1.000 0.000 1.707 0.3540.354 0.000 0.000 0.000
KY=10°x —1.000 0.000-0.354 0.354 2.549—0.158—0.065—0.065—1.000
0.000 0.000 0.354-0.354-0.158 1.549-0.065-1.065 0.000
—0.354—-0.354—-1.000 0.000—0.065—-0.065 2.226 0.111-0.354
—0.354-0.354 0.000 0.006-0.065—1.065 0.111 1.596 0.354

0.000 0.000 0.000 0.0081.000 0.000-0.354 0.354 2.707

2.707 0.000 0.006-0.000—1.000 0.000—0.354-0.354 0.000

0.000 1.707—0.000—1.000—0.000—0.000—-0.354—-0.354 0.000

0.000-0.000 2.707 0.000-0.354 0.354—1.000—-0.000 0.000
—0.000—1.000 0.000 1.707 0.3540.354 0.000—0.000—0.000
KP=10x —1.000—0.000—-0.354 0.354 2.528—0.179—0.000—0.087 —1.000
0.000—-0.000 0.354-0.354-0.179 1.528-0.000-1.087 0.000
—0.354—-0.354—-1.000 0.000—0.000—-0.000 2.030 0.1770.354
—0.354-0.354-0.000—0.000-0.087 —1.087 0.177 1.574 0.354

0.000 0.000 0.000-0.000—-1.000 0.000—0.354 0.354 2.707

subjects of current research and beyond the scope and intent of =T 1@T via Eq. (41b).

this study, and hence they will be addressed and reported in future . . .
work. Therefore, for any diagonal transformation matfix the eigen-

vector matrix W=®T yields ¥ A 'B¥=0=0, and hence
the existence o implies the diagonalizability of the asymmetric
Acknowledgments eigenvalue problem in Ed42).
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has been greatly appreciated. Appendix B: Proof That the Moore-Penrose Pseudoin-

. . . - verse of the Known Partition of the Mass Normalized
Appendix A: Proof Regarding the Diagonalization in - gjgenvector Matrix is Equal to a Partition of the In-
the Asymmetric Eigenvalue Problem verse of the Mass Normalized Eigenvector Matrix

_Conglder the real symmetric generalized eigenvalue problem-l-he mass normalized eigenvector matthy. can be parti-
given by tioned such that
ADO=B®, (40) ;
whereA and B are two full rank symmetric matrices is the ¢:[g
eigenvector matrix, an@® is the eigenvalue matrix. It is known
that, even in the case of repeated roots, there exists a unique setloére Uy and V. are real unitary matrices containing the

eigenvectors such that left and right singular vectors, anf«y is a diagonal matrix
containing the singular values. The Moore-Penrose pseudoinverse

=USV'= O—SVT 43
- T lusvT) (43)

T — ~

AP=I, (412) of the partition¢, which is denoted here ag', must satisfy the

®'BO=0, (41b)  following four conditions:
and that® is a diagonal matrix. Now consider a reformulation of (1) ¢pTd=0¢, (44a)
this problem as R

R TRt ot
where ® is the corresponding eigenvalue matrix, adtis the (3) pop'=(da"7, (44c)
corresponding eigenvector matrix. Since the product of two sym- Apn o Aialr
metric matrices is not necessarily symmetric, Ep) is in gen- (4) ¢'p=(d'¢)". (44d)

eral an asym_me@ric eigenvalue prok_)lem, and diagonaliz_ability i_qet Us assume tha}ﬂzVS’llAJT and check if this solution sat-
an asymmetric eigenvalue probl_em S not guaranteed. Since, hcfg\fi'es the necessary conditions, Keeping in mind thandV are
ever, in this case the asymmetric eigenvalue problem of(42). ) ) AA o

is in fact derived from the symmetric eigenvalue problem of Eq¥nitary matrices, and that=USV', we get

(40) and (41), there indeed exist sets of eigenvectors that will a1 — (JeyT—
yield a diagonal®. In fact, assume thal’=®T, such that (1) VS U $=USV =9, (452
WA IBW= (0T) ‘AT IBOT (2) VSTHUTGVS IUT=VS T, (48)
=T d 'dD'BOT via Eq. (41a) (3) #VSIUT=UUT=(gVS 1T, (450)
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Tt 1T o T 2t INT ST e vy T [4] Baruch, M., 1982, “Optimal Correction of Mass and Stiffness Matrices Using
(4) ¢'p=VSTTU'USV'; (¢'¢p) =VSUUS V' Measured Modes,” AIAA J.20, pp. 1623—1626.

(45d) [5] Beck, J. L., and Katafygiotis, L. S., 1998, “Updating Models and Their Un-

- i - , inties. I: Bayesi istical F k" J. Eng. Meti4, pp. 455—
Note that the proposed solution’=VS~1UT satisfies the first certainties. I Bayesian Stafistical Framework.” J. Eng. Met84, pp. 455
three conditions, but it does not satisfy the fourth conditiofess [6] Alvin, K. F., and Park, K. C., 1994, “Second-Order Structural Identification

UTU is a diagonal matrix, and so in general this solution does not Procedure Via State-Space-Based System Identification,” AIAA3Z,,pp.
hold. In the case of a diagonal mass matrix, however, the fourth_ 397-406. B
condition will also be satisfied. To show the validity of this claim, [7J Avin. K. ., Peterson, L. D., and Park, K. C., 1995, "Method for Determining

let us write the expression for the inverse of mass matrix in terms 3"";'21 L;?'?;%e_rl"ggss and Stifiness Matrices From Modal Test Data,” AIAA

of the normal eigenvectors to yield [8] Tseng, D. H., Longman, R. W., and Juang, J. N., 1994, “Identification of
—1_ T_ T T_ 21T Gyroscopic and Nongyroscopic Second Order Mechanical Systems Including
M T=¢¢ =USVVSU =USU". (46) Repeated Root Problems,” Adv. Astronaut. S8iz, pp. 145—165.
Therefore the columns dff are the eigenvectors for the eigen_ [9] Tseng, D. H., Longman, R. W., and Juang, J. N., 1994, “Identification of the
value problem Structure of the Damping Matrix in Second Order Mechanical Systems,” Adv.
Astronaut. Sci.87, pp. 166—190.
M u=us? (47)  [10] Balmes, E., 1997, “New Results on the Identification of Normal Modes From
Experimental Complex Modes,” Mech. Syst. Signal Proce$s,.,pp. 229—

and U does not have a prescribed structure for a general mass 243.

matrix. For a diagonaj mass matrix’ on the other haM’l is [11] Lus, H., 2001, “Control Theory Based System Identification,” Ph.D. thesis,

diagonal, and so iJ; in fact, in such a case, Columbia University, New York. _
[12] DeAngelis, M., Lys H., Betti, R., and Longman, R. W., 2002, “Extracting

ud,jp)== 5”. (48) Physical Parameters of Mechanical Models From Identified State Space Rep-
resentations,” ASME J. Appl. Mechg9, pp. 617—625.
whereU(i,j) refers to the element on thth row andjth column  [13] Lus, H., Betti, R., Yu, J., and DeAngelis, M., “Investigation of a System
of U, and 5”- is the Kronecker delta. In this case therefore the Identification Methodology in the Context of the ASCE Benchmark Problem,”

T J. Eng. Mech., to appear.
productU’U becomes [14] Sestieri, A., and Ibrahim, S. R., 1994, “Analysis of Errors and Approximations

o | 0 in the Use of Modal Coordinates,” J. Sound Vii77, pp. 145-157.
0T0= nxn nx(N-n) (49) [15] Juang, J. N., Cooper, J. E., and Wright, J. R., 1988, “An Eigensystem Real-
O(an)xn O(an)X(an) ization Algorithm Using Data CorrelationdERA/DC) for Modal Parameter

. " . o Identification,” Control Theory and Adv. TechnoH(1), pp. 5-14.
and hence diagonal, such '_[hat CO_ndItl@l) is also 5at|§f|ed- N [16] Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., 1993, “Identifica-
conclusion, for a system with a diagonal mass matrix, the pro- tion of Observer/Kalman Filter Markov Parameters: Theory and Experiments,”
posed solutiong’=VS~!UT indeed satisfies all the necessary i Gﬂd'gi?"g Dy”dll_ﬁ' Pp- 320;333' 1999 “Identiication of Linear St
ey B : us, A., betll, R., an ongman, . W., , entirication or Linear ruc-

conditions and hence is the true solution. tural Systems Using Earthquake-Induced Vibration Data,” Earthquake Eng.
Struct. Dyn.,28, pp. 1449-1467.
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Linear Multi-Degree-of-Freedom
System Stochastic Response by
.+ Tasas | Using the Harmonic Wavelet
.0 soanos § Transform

Fellow ASME,
L.B. Ryon Chair in Engineering
e-mail: spanos@rice.edu The wavelet transform is used to capture localized features in either the time domain or
the frequency domain of the response of a multi-degree-of-freedom linear system subject
Rice University, to a nonstationary stochastic excitation. The family of the harmonic wavelets is used due
6100 S. Main, to the convenient spectral characteristics of its basis functions. A wavelet-based system
Houston, TX 77005, U.S.A. representation is derived by converting the system frequency response matrix into a time-
frequency wavelet “tensor.” Excitation-response relationships are obtained for the
wavelet-based representation which involve linear system theory, spectral representation
of the excitation and of the response vectors, and the wavelet transfer tensor of the system.
Numericalresults demonstrate the usefulness of the developed analytical procedure.
[DOI: 10.1115/1.1601252
Introduction This equation defines the continuous wavelet transform. The func-

The wavelet transform provides a combined time-scale reprti??n w(t) is the mother wavelet function; the symhekepresents
sentation of signalg[1—4]). Its localization properties are quitet e scale, and the symbbldenotes the time positioning of(t),

useful for representing random fields, and for analyzing nonst\é\l’h”e " denotes complex conjugation.
. . o . Modifying the continuous scheme, a discrete wavelet scheme
tionary signals([5-7). Problems c_)f vibration analysis have beer?:an be%trgduced. Several discretization schemes have been em-
approached by a wavelet-Galerkin scheffé]), and by wavelet- ployed in previous studies. The so-called dyadic wavelet trans-
finite element scheme$9]). Pertinent applications involve analy- ¢y ~%e o widely used orthogonal scheme where the scale param-
sis of beamg[10]), base isolation systenigl1]), and plate struc- er is sampled on a dyadic grid. Specifically=2) and b
tures ([9]). Studies related to treatment of linear systems ha\gé i P y grid.  spec '
either used a numerical approach to derive the response, or hﬁ\)élz ' Wge{ej eN é{?d keZ. Tr:.e slymb(ilhq ;ér)d K ?enme tlhf q
relied on restrictive assumptions regarding the nature of the exe2'€ and ume position respectively in the discrete wavelet do-
tation and the spectral properties of the wavelet function us&@in- Therefore Eqcl) is rewritten as([3])
([12-14). _ _

This paper develops a general wavelet-based system represen- DWT;(j ,k):2"’2f f(t)w* (27 't—k)dt. 2
tation, and excitation-response relationships in the wavelet do- -
main. For this purpose, traditional concepts such as the systeM, hamonic wavelet transform is used in this study. The
|mpulse_ response matrix and the frequency response matrix gice of the harmonic wavelets is made due to two appealing
treated in a wavelet basis context. Further, excitation-response Stures that they exhibit. First, they are defined by a simple ex-
lationships are derived by relying on linear system theory, and thit tormula, and second they’have an exactly boxlike represen-
scheme that generates f[he harmonic wave]et coefficients. Fin jon in the frequency domaifi5]). These properties lead to trac-
the wavelet representation and the evolutionary spectrum of i so|ytions for spectral estimation and for system response
stochastic response are obtained. The usefulness of the propagsgd, mination. Specifically, the mother wavelet of the harmonic

method is demonstrated by applying it to a two-degree-of-freed | h h ; h :
(2DOF system subject to filtered white noise. QWhvelet transform has a spectrum given by the equation

©

1
W(w)= o 2r<w<4w and

The Wavelet Transform W(w)=0, elsewhere. 3)

The wavelet transform assigns to an arbitrary funcfi¢r) an-

other function of two variablea andb via the equation By considering the inverse Fourier transform of the above func-

tion, the harmonic wavelet representation in the time domain is
derived. Specifically,

1 (= t—b
WT(a,b)=— f(t *(—)dt. 1 i4mt_ qi2mt
t(a,b) \/afw (Hhw a 1 W(t)=%; — @

'Research Engineer, Shell Energy Company, London, UK. Two kinds of discrete harmonic transform have been intro-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF duced. These are the dyadic and the general transf([ﬂrﬁ@

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ; : o
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 26] he difference between the two harmonic schemes is in the way

2002; final revision, Dec. 4, 2002. Associate Editor: A.A. Ferri. Discussion on tH#at they divide the time-frequency plane. An improved scheme
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Mechanical and Environmental Engineering University of California—Santa Bap; ; ;
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final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- ¥Vave||et that belongs to scal@nd time positiork is given by the
ICS. ormula

724 | Vol. 70, SEPTEMBER 2003 Copyright © 2003 by ASME Transactions of the ASME



el4m(2t—k) _ gizm(2t—k) (m+n)7 with bandwidth —m)/(27). The general harmonic
(5) scheme introduces an orthogonal transform as well. The complex

w; (D) =w(2lt—k)=

i2m(21t—k) ' general harmonic wavelet coefficients of a functicit) are de-
and its Fourier transform is termined by the equation
1 . . _ * k
W,-,k<w)=52*le*'wk’2’, 22r<w<247 and af(m,n),k]=(n—m) f_ f(t)W*(t*m)dt. (15)
W, (0)=0, elsewhere (6) Animproved version of the harmonic wavelet transform intro-

) ) | ) ] duced by Newland[16]) enhances the time resolution in the
For a discrete signal of lengii=2", the scale indexruns from wavelet map for a given frequency resolution by filtering the
0 to n—2. At each scalg there are 2wavelets positioned at mother wavelet function in the frequency domain using a Hanning
different time instants by the indéx The wavelet coefficients are filter. Specifically,
determined by the equatidf5])
w—m2
17005(—) .
n—m

[ . W(w)= ————
a(j,k)=21J f(Hw* (2't—k)dt. (7) (n—m)27
- For every scale, this representation yields wavelet coefficients cor-

By using the relationship between the harmonic wawelg) and responding to points spacédinits apart, wherd is the sampling
its Fourier transformV(w) described by the formula period. The improved harmonic scheme will be called henceforth
the filtered harmonic scheme.

(16)

X 472 .
W*(ZJt—k):f W ((w)e'“ldw, (8)
272!
Eq. (7) may be rewritten in the form Wavelet Representation of Non-Stationary Excitations
A2l o The wavelet representation of a functié(t) expressed in a
a(i,k)=J F(w)e'“"?dw, (9) discrete form with lengtiN=2" by using the dyadic scheme of
2m2! the harmonic wavelet transfor(fil7]) is given by the equation

whereF (w) is the Fourier transform off(t). The computation of

n-22-1
the wavelet coefficients may be then performed in the discrete - .
format by expressingf (w) in a Fourier series. Specifically, f(t)=a0+j§::o kzo [ayw(2't—k) +af, w* (2't=k)]. (17)

Fais=2nF[2m(2'+9)]. (10)  For a real and zero medift), «(0)=0 anda}y is the complex
Thus the harmonic wavelet coefficients may be determined gnjugate ofa;, . The functionf(t) thus can be represented by
using the equation the formula
2i-1 n-22i-1
a(j,k)= D Fo, ei27262 (11) f(=2:Re>, >, [aym(2t—k)] (18)
s=0 1= =

where the factor\w has been canceled by the factor #/fom As shown by Priestley18], the spectral representation of a

Eq. (10). Therefore, to compute the wavelet coefficients, octavéonstationary process may assume the form

blocks of the sequencE are processed by the inverse Fourier o

transform. f(t)=f d(w)dZ(w), (19)
Harmonic wavelets of the dyadic scheme that correspond to —o

dlffer.ent scalle.s, and also wavelets of the same scale put at d'ﬁﬁ/ﬁere o) is an oscillatory function, an@(w) is a stochastic
ent time positions are orthogonal to each other. That is,

process with orthogonal increments. This oscillatory function can

o ) have the form of an amplitude-modulated trigonometric function,
f w(2t+k)w* (2"t+s)dt=0 V jkr,s, (12) .
e Pi(w)=Al(w)e ", (20)
except when=r ands=k. where 8(w) = wq is the frequency at whiclp,(w) has its maxi-

The general harmonic wavelet transform divides the frequendyum fast Fourier transforr=FT) magnitude. The functioA(w)
axis in a different manner. Two indices are used to define the scags as an envelope to the trigonometric function. The non-
at this scheme. A wavelet of scal®, n) and positiork is defined normalized evolutionary spectrum of the nonstationary process

in the frequency domain as described by Eq(18) is traditionally given by the formula
w L wieem oy o g dHi(@)=|A(w)?E[|dZ()|?], (21)
=————@g lwk(n- <w< ) ) ) .
mn (@) (n—m)277e . Memso=nem an whereE is the operator of mathematical expectation. In conjunc-
tion with the time-frequency localization attributes of wavelets, it
Wi nk(@)=0, elsewhere. (13) has been suggested by Spanos and Trafd@hat representa-
based local spectrum of a nonstationary process context. Specifi-
_ cally, the non-normalized local spectrum of a nonstationary pro-
Win,n k() =W| t= —— cess at scalg and time positiork is given in that study by the
. ) formula
e|n27-r{+—[k/(n—m)]}_e—lmZTr{t—[k/(n—m)]} ) ) 5
= 7 ., (14) H(j.k) =E[la(j,k)|]. (22)
i27r(n—m)(t— n—m) The normalized local spectrum of a nonstationary process is also

defined in that study as the product of the non-normalized local
wherem andn are positive real numbers. This is the expressiospectrum multiplied by the energy of the wavelet function at the
for a harmonic wavelet centered at tikEn—m) and frequency specific scale. That is,
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E[|a(j,k)|?] The impulse response function for a lightly damped system is

S(j,k)= o (23) given by the equation
This equation defines the local spectrum in specific time and fre- h(t)= iefgwot sin(wgt). (32)
guency regions. In real units, these regions for the dyadic scheme Wy d

involve the sampling periodl, and the total number of data points

per sample recordl of f(t). Specifically, In this equation,wy= Jk/m denotes the natural frequency,

=c/2,/km denotes the damping ratio, arey=wv(1— %) de-

2124 2i44 notes the damped natural frequency of the system. Well-known
NT Ses—T and modifications of Eq(32) apply for 7=1.
In the frequency domain, the system is described by the fre-
NTk NT(k+1) (24) quency response function. This function is given by the equation
_t
2l o

H(w)= (33)

If the filtered scheme is used, the local spectrum of the station- —Mme’+ico+k’
ary process is determined by the formula The system response is obtained in the frequency domain by using

E[|a((m,n),k)|?] the Fourier representatioR(w) of the excitation and the fre-
S((mn), k)= —————. (25)  quency response functidA(w). Specifically,

The applicable time-frequency regions are X(w)=H(w)F (o). (34)
m2 n2m The dyadic harmonic wavelet scheme generates its coefficients
— <w<——, with n—m=10 and in two steps. First the discrete time sequence of the signal is
NT NT converted to a frequency sequence through the Fourier transform.

rT<t<(r+1)T, with r=1:N—-1. (26) Second, octave bands of the frequency sequence are processed by
the inverse Fourier transform to generate the wavelet coefficients
Note that cross-wavelet coefficients can be used to derive thevarious scalef5)).

cross-spectrum between two stochastic proce$s6p. Such pro- In the case of a dynamic system representation, the frequency

cesses can be the excitation and the response of a dynamic systesponse function is a frequency sequence, when expressed in a
The cross-wavelet coefficient€WT’s) between the excitatior, discrete format. The Fourier coefficients of this sequence can be
and the responsk to a multi-degree-of-freedoitMDOF) system directly implemented into the second step of the harmonic wavelet
are given at scalgand time positiork by the formula([20]) scheme. After processing octave bands of the frequency response
) ] ] sequence, one obtains the harmonic wavelet coefficients of the
E[CWTxf(j, K ]=E[WTH (j,K)WTX(j,K)]. ~ (27) system by inverse Fourier transforming. These coefficients pro-
vide a time-frequency representation of the system that originates
from its frequency representation. The relationship between the
frequency response functidt(w) and the harmonic wavelet co-

The cross spectrum between the excitatipand the responsg
is then determined by the equation

) E[|CWT(j,k)|?] efficientsT(j,k) that represent the system at sdadand positiork
Cik=——7%—"— (28) is derived by resorting to Eq9). That is,
472l o
Wavelet Representation of a MDOF Linear System T(] ,k)=J j H(w)e'"?da. (35)
272

A time-frequency representation of a multi-degree-of-freedom .
(MDOF) system is derived in this section. For clarity, the procelhe frequency response functidt(w) can be expressed as a
dure is first demonstrated for single-degree-of-freedom systerfscrete sequence in the form
The equation that describes the response of a SDOF dynamic _ _ j
system is given by the formula Hais=2mH[0=2m(21+5)]. (36)
. . Equation(35) can be then written in a discrete format. That is,
mx+ cx+kx=f(t), (29) v
)

wherem represents the mass of the systendenotes the damp- ; _221 i27ski2l
ing, k is the stiffness parameter, ahdlienotes the excitation. Al- T(.k)= & Haivs€ ' (7
though the symbdt has been already used earlier to denote wave-
let time positions, it is also used in this section of the paper fbhe representation of the system based on the wavelet coefficients
denote, consistently with a standard vibrations notation, the syxtracted from its frequency response function as described by Eq.
tem stiffness. The solution to the above equation can be derivé®) or Eq. (37) will be called the “wavelet transfer function.”
either in the time domain or in the frequency domain. In the time Obviously, the Fourier coefficients of the frequency response
domain the response is given as a combination of the homodenction that are used to provide information in the frequency
neous and a particular solution. The homogeneous solution candeenain can be distributed in octave blocks to provide time infor-
expressed as mation, as well. The resolution of the wavelet map can be in-
creased by using the filtered scheme of the harmonic wavelet
_ A(t—tg) transform which provides the best possible resolution in time,

Xh(t)_Z Cietit o, (30) given the number of data points available per sample. The fre-

= guency resolution increases when the length of the frequency re-

whereC; are the appropriate constants, agdre the roots of the sponse sequence increases.
characteristic equation of the system. A particular solution is For multi-degree-of-freedom systems, the equation of motion
found by convolving the excitatiof(t) with the impulse response can be written in the form

of the systenh(t). That is, M%+ Ci+Kx=F, (38)

2

Xp(t):f h(t—7)f(r)dr. (31) WwhereM is the system mass matrig is the system damping
0 matrix, andK is the system stiffness matrix; the symboti€notes
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the excitation vector, and denotes the response vector. The sysExcitation-Response Relationships in the Wavelet Do-
tem frequency response matrix is given by the equation main

H(w)=[-o®M+iwC+K] L (39) A har_monic wavelet map provides a time-fr_equency represen-
b - - tation with each scale related to a nonoverlapping frequency band.
One may derive the wavelet representation of a multi-degreEberefore reconstructing a signal by using the wavelet coefficients
of-freedom system by following two different approaches. Ththat correspond to one scale only, would result in a monochro-
first approach involves the use of the frequency response matfi@tic signal in the limit case of a narrow frequency band. Signal
and the wavelet method presented in this section for SDOF sygconstruction based on the wavelet coefficients that correspond to
tems. Specifically, each element of the frequency response magikime interval and extend to all scales approaches in the limit
is treated separately to derive a wavelet representation by usfiftge, the wavelet representation of a pulse signal. The pulse sig-
Eq. (35). Further, assembling the wavelet representations for eag@ls and the monochromatic sinusoids are the signals used in the
element of the frequency response matrix, the “wavelet transf@gneration of the impulse, and the frequency response functions,
tensor” of the MDOF system is formed. For a linear system witfespectively. Therefore the harmonic wavelet representation in-
n excitations andn responses, the frequency response matrix, aigtHdes elements of both the time and the frequency domains char-

the wavelet transfer tensor can be written as acteristic functions of a system. However, the harmonic wavelet
transform cannot, due to the uncertainty principle, represent ex-
Hi(o) Hiw) ... Hi(w) actly neither a pulse nor a monochromatic signal.
By wavelet transforming Eq.29) that describes a SDOF sys-
Hzy(w) ) ’ tem, integrating by parts and using the chain rule of differentia-
H(w)= . . . tion, one obtains the following equatidf21]):
Hpa(w) . ... Hpw) M =@ WTx(J,K) + e — WT(j,K) + kWT, (], k) = WT(j. k),
and (44)

. . . where WT, and WT; denote the wavelet transforms of the re-
Tuhk) - Tl Tan(k) sponse, and of the excitation, respectively.

Tou(j,K) . . To derive the wavelet representation of the responsg ®¥4th
scalej is considered separately. The wavelet coefficients of the

TG,k = ' ' ' » (40)  excitation WT(j,.) that correspond to that scale form a vector
with elements at various time positions. Using linear theory,
T,4(7.K) ) s Tk WT,(j,.) are derived by convolving the wavelet coefficients of
mit)s mm1» the excitation with the impulse response of the corresponding to
whereT,(j,k), I=1,... mandr=1,...n signify the system scalej subsystem. This subsystem describes the dynamic behavior

wavelet coefficient at scajeand time positiork corresponding to ©f the original system, Eq44), in the frequency band associated
the H,(w) element of the frequency response matrix. The equ ith scalej and involves the energy of the frequency response

tion that describes this relationship is unction in a limited frequency region. ) N
P The impulse response of the subsystejfk) is obtained in a

272l o discrete form by applying the inverse Fourier transform on the
T,,r(j,k)=f Hy(0)e““?do. (41) frequency response sequende Eq. (36), corresponding to the
272} frequency range associated with scal@hat is,

This approach is quite simple to implement since it assumes par-

allel computations to derive the wavelet coefficients correspond- S

ing to each element of the frequency response matrix. h;(k)= Z Haii € : (45)
The second approach relies on modal analysis, and on repre- =0

senting the system response in terms of its eigenmodes. The re-

sponse of a MDOF systent(t) is expressed via the eigenmodeéonvolution is then considered in a discrete format between the
. impulse response of the subsystéytk), and the wavelet coeffi-
of the system 6™, ¢, ... @) in the form

cients of the excitation W{j,.) to derive the wavelet coefficients
of the response W{j,.). Specifically,

21

d
x()= 2 ¢V q(t). (42) )
q=1
. _ . WT (k)= > hy(mWT(j,k—n). (46)
Under commonly used approximations for the damping maiyix n=0

the system response can be represented by a stun€oupled
equations with each equation describing the motion in a particuf@his calculation is repeated for every scale to derive the wavelet

mode of vibration. That is, coefficients of the response.
By comparing the impulse response function of the subsystem
ﬁq(t)+quwq'nq(t)+wgnq(t):gq(t), (43) hj(k), Eq.(45), to the coefficients of the system wavelet transfer

function T(j,k) as described by Eq37), it is concluded that the
wherewg, £y, andg,= (N TE/(H D) DM ¢, are the natural two representations are identical. Both are derived by applying the
frequency, damping ratio, and participation factor of tha inverse Fourier transform in blocks of the frequency response se-
mode, respectively. This approach decomposes the MDOF syst@ugnce of the system. Therefore Eg¢6) can be written in the
to an ensemble of SDOF, oscillatory Eq43), for which the form
wavelet transfer function can be readily determined by using Eg.

(35). In this manner the wavelet representation of the MDOF sys- -1
tem consists of the wavelet transfer functions assigned to the WT,(j k)= E T(j,2)WT(j k—2). (47)
eigenmodes of the system. 7=0
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Equation(47) presents an excitation-response relationship given X

explicitly in the time-frequency domain. In the case of stochastic ’
excitations the expected value of the response wavelet coefficients m2 /I\ y2
is given by the formula

2i-1
E[WT,(j k)= EO T(j,2E[WT((j k—-2)],  (48) “

where the operator of mathematical expectation is applied on en-
sembles of system excitations and responses. Applying4Byjto
Eq. (23), the local spectrum at scajeand time positiork of the x1

c2
response process is determined for the dyadic scheme. That is, l T

b1 ) m1l
E (ZZO T(j,z)WTf(j,k—z)) }

S(j.k)= 5] . (49)

k1 cl
Equation (49) determines the evolutionary spectrum of the re-
sponse at scal¢ and time positionk of the dyadic harmonic z
scheme in terms of the wavelet coefficients of the excitation pro-

cess and of the system representation. For the filtered harmonic
scheme, the response spectrum is expressed in the form \v/
n-m-1

2
E ( > T«m,n),z>WTf(<m,n>,r—z))
z=0 Fig. 1 Stochastic response of a 2DOF linear system under
S((m,n),r)= . base excitation

n—-m
(50)

In the case of a MDOF system, two approaches for deriving the
wavelet representation of the response are possible based onTthe wavelet coefficients of the output due to each excitation are
two different ways of representing the system in the wavelet dtien added to provide the wavelet coefficients of the response
main, Eqs.(40) and (43). The first approach uses the frequencyVTx,. That is,
response matrix to derive the wavelet transfer tensor, EiB. m
and (41). The dyadic harmonic coefficients of the response pro- S .
cessx, corresponding to the excitation processare derived by WTx(j -k)—zl WTx(j,K). (52)
the equation

The preceding formula involves the superposition principle in the

2l-1 wavelet domain.
WTx, (j, k)= 2 T, (j,2)WTF,(j k—2). (51) As an alternative, modal analysis can be employed. By wavelet
7=0 transforming both sides of E€42), which defines the response of

i
(8]
J

base acceleration (m/sz)

60

time (sec)
frequency (rad/s)

Fig. 2 Evolutionary spectrum of the base acceleration
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Fig. 3 Spectrum of the response
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X, by using the wavelet method

the system in the time domain, one may obtain the wavelet trarBDOF System Response to Stochastic Excitation

form of the response with respect to the wavelet representation oq

the functionsz(t),

d

WTX(j,K) =2, ¢ PWT74(j,k). (53)
q=1

The wavelet coefficients corresponding to functiogpét) are then
obtained by wavelet transforming and E¢.3), and using Eq.
(47). This leads to the solution of the equation

2

J . J
ﬁ—kZWan(J ,k)+2§qwq

S WT 71, K)+ 02WT 7(1,K)

=WTgq(j.K). (54)

40

60
frequency (rad/s)

Fig. 4 Spectrum of the response

Journal of Applied Mechanics

n this section the usefulness of applying the wavelet-based
method for deriving the response of MDOF linear systems to non-
stationary excitations is assessed. For this purpose the 2DOF lin-
ear system shown in Fig. 1 is considered subject to base excita-
tion. The absolute displacements of the two masses are denoted by
y; andy,, while x; and x, are the relative displacements with
respect to the base displacemerit denotes the base acceleration.
The equations of motion of the system are

My X1+ (C1+ €)Xy — CoXot+ (Ky T Kp) Xy —KoXp = —my 2,
(59)

and  MyX,+ CoXo— CoXq+ KoXo— KXy = —m,2. (56)

100

X4 by using Monte Carlo simulation
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Fig. 5 Cross-spectrum magnitude between F, and x,; derived by the
wavelet-based method
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Fig. 6 Cross-spectrum phase between F; and x; derived by the wavelet-
based method

The parameters; andm, denote the mass of the two bodies, representation of the response is determined. Further,(58).

and ¢, are the damping coefficients, ahkd and k, denote the provides the evolutionary response spectrum based on the filtered
stiffness coefficients. In context with the notation of E8g8), the harmonic scheme.

mass, stiffness, and damping matrices, and the excitation and reA numerical example is considered. The following values for

sponse vectors are the system parameters are chosem;=12 kg, m,=5 kg, k;
_ _ =4000 N/m, k,=2000 N/m, c;=8 N/m/s, c,=2 N/m/s. A fil-
:[ml 0 , _ CitC, 02} - kitke kz} tered white noise is used as the excitation. A second-order filter
= 0 m, —Cy Cy - —ky ko with natural frequency equal te,= 18 rad/s, and damping ratio

(57) equal to/=0.2 is used to generate the excitation process. Those
values are chosen such that the excitation spectrum includes en-
) (58) ergy in the band between the two natural frequencies of the sys-
tem which are 13.7 and 26.7 rad/s. The evolutionary spectrum of
Using the frequency response matrix, E80), which in this case the base acceleration is shown in Fig. 2.
is a 2X 2 matrix, one can derive the wavelet transfer tensor of the Through filtering, 300 records of the excitation process are gen-
system, Eqs(40) and (41). By employing Eq.(48), the wavelet erated. The spectra of the system response are derived by two

- m]_Z
- m22

X1
X2
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methods. First the wavelet method of determining the wavelet WT
coefficients of the response process and the corresponding values X
of its evolutionary spectrum as captured by Etf) and Eq.(23) 4
is employed. Second, Monte Carlo simulation is used to derive the
spectrum of the system respor(§&9]).

Pertinent results are shown in Figs. 3 and 4. It is seen that the
evolutionary spectrum generated by the wavelet-based method is
virtually indistinguishable from the one generated by Monte Carlo
simulation. It accurately locates the magnitude and position of the
response peaks in the time-frequency plane. Besides providing an
explicit excitation-response relationship in the time-frequency do-
main, the proposed wavelet-based method is computationally ad-
vantageous compared to the Monte Carlo simulation. This is due
to the efficiency of the convolution only, which is required to
determine the expected value of the response wavelet coefficients,
versus the numerical integrations and the spectral processing re-
quired by the Monte Carlo method. Similar results have been
obtained for the response variabigt); they are not shown here
for brevity. g

In Figs. 5 and 6 the cross-spectrum magnitude between the wy
excitation procesk, and the response processare presented as
derived by both the Monte Carlo simulation and the wavelet-
based analytical approach using E&8); they are practically in-
distinguishable from the relevant Monte Carlo simulation resul
which are not shown for brevity.
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Nonintegrability of an

Infinite-Degree-of-Freedom

Model for Unforced and
«vagasai | Undamped, Straight Beams

Department of Mechanical and Systems

Engineering, We study a mathematical model for unforced and undamped, initially straight beams. This
Gifu University, system is governed by an integro-partial differential equation, and its energy is con-
Gifu, Gifu 501-1193, Japan served: It is an infinite-degree-of-freedom Hamiltonian system. We can derive “exact”

finite-degree-of-freedom mode truncations for it. Using the differential Galois theory for
Hamiltonian systems, we prove that any two or more modal truncations for the model are
nonintegrable in the following sense: The Hamiltonian systems do not have the same
number of “meromorphic” first complex integrals which are independent and in involu-
tion, as the number of their degrees of freedom, when they are regarded as Hamiltonian
systems with complex time and coordinates. This also means the nonintegrability of the
infinite-degree-of-freedom model for the beams. We present numerical simulation results
and observe that chaotic motions occur as in typical nonintegrable Hamiltonian systems.
[DOI: 10.1115/1.1602483

1 Introduction fast diffusion for which a mechanism is very similar to Arnold
In this paper we study a mathematical model for an unforcé’dﬁus'on ([19,20)) occurs. Numerical observations of these behav-

and undamped, initially straight beafii—10]), such as shown in 10'S were provided in Re{21]. _ _ )
Fig. 1, On the other hand, for the case in which the beam is unbuckled

or straight(i.e., I" is positive or its absolute value is sufficiently
smal), free and forced periodic vibrations were analytically and
u"=0, (1) experimentally investigated in an early stage of this sulfjgct
9)). In particular, Tseng and Dugundiji] analytically and experi-
{ eentally studied harmonic, subharmonic, superharmonic, and ul-
fr‘;)asubharmonic motions under damping and periodic forcing.

i+ um/_

1
r+KJ (u')2d¢
0

whereu=u(t,z) represents the transverse displacement, and

overdot and prime represent partial differentiation with respect e .
t and z respectively. The expression in the bracket of Ef). ltrasubharmonic vibrations were also analyzed in Rf5.[9].

approximately gives the extensive force, wh&rand « are con- See Ref[l(_)] for more details an_d refe_rences on early re_searches.
stants and the former especially represents the initial tension. Si@reover, it was shown theoretically in R¢22] and experimen-
e.g., Refs[1], [2], [5], [10] for the derivation of Eq.(1). For tally in Ref. [23] that chaotic vibrations may occur when the
simplicity of computation, we choose hinged ends as the boundatyaight beam is subjected to two-frequency quasiperiodic forcing.
conditions: The objective of this paper is to prove the nonintegrability of
the infinite-degree-of-freedom modél) for unforced and un-
u(t,0)=u(t,1)=0, u"(t,00=u"(t,1)=0. (2) damped, initially straight beams. To this end, we use the differen-
tial Galois theory for Hamiltonian systeni4,25)) and its appli-
Equation (1) represents an infinite-degree-of-freedom Hamileation to a special class of two-degree-of-freedom Hamiltonians
tonian systenisee Appendix A ([25—27). Here “nonintegrability” means that the Hamiltonian
If I is negative and its absolute value is sufficiently large, thesystem does not have the same number of “meromorphic” first
Eg. (1) can be used to analyze vibrations of a buckled beam. #mpjex integrals which are independent and in involution, as the

this situation, extending a global perturbation technique called 1her of its de P ;
ST grees of freedom, when it is regarded as a Hamil-
mginéﬁ%\gzcr%?::gg](&}slgc%trI-\:\?qurfihingegﬂririssdggﬂb?]estzzvzgdlin torrlian system with complex time and coordinates. When a Hamil-
damping and periodic, transverse excitation. Such chaotic vib‘ni hian system is nonintegrable in this sense, we can often .f'nd
otic motions in the system although theoretical explanations

tions in related experimental models were also observed by Tse | . . :
and Dugundj{14] and subsequently studied by Moon and Holme&'€ Séldom givertexceptions were presented in Reff25], [28],

[15]. Furthermore, it was proven recently by Melnikov-type tech-29))- We also remark that the presence of chaotic motions implies
niques([16,17)) that very complicated behaviors occur even in thée nonintegrability of the systeh30]).
absence of the damping and periodic excita(jd8]): chaos and ~ The outline of this paper is as follows. In Sec. 2 we derive
“exact” finite-degree-of-freedom modal truncations for Ed). In
Contributed by the Applied Mechanics Division ofif AMERICAN SocieTy oF ~ Secs. 3 and 4, we review the differential Galois theory for Hamil-

MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- tonian systems and its application to a class of tWO_degree_of_
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 4 . .
2002; final revision, Feb. 20, 2003. Associate Editor: O. O’Reilly. Discussion on tﬁéeedom systems with potentials. In Sec. 5 we apply the general

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmentesults to the finite-degree-of-freedom modal truncations and

Mechanical and Environmental Engineering University of California—Santa Baghow that any truncations of qu_) with two or more modes are
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months after

final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- anmtegrable. This also implies the nommegra_lb'“ty of _the
ICS. infinite-degree-of-freedom modél). In Sec. 6 we give numeri-
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z=0

z=1

Fig. 1 Transverse deformation of an initially straight beam

Consider anN-degree-of-freedom canonical Hamiltonian sys-
tem

z=J\D,H(2), zeRN, (10)

where H:R?N—R is analytic andJy is the 2NX 2N canonical

symplectic matrix
0o iV
W iv o ()

cal simulation results and observe that chaotic motions arise as in ) . ) o
typical nonintegrable Hamiltonian systems. Finally, we concludaith id the Nx N identity matrix. We regard the Hamiltonian

with a summary and some comments in Sec. 7.

2 “Exact” Finite-Degree-of-Freedom Modal Trunca-
tions
The eigenvaluei; and eigenfunctions;, j=1,2, ..., for the

linearization of Eq.(1) about the trivial solutioru=0 form a
countable set:

system(10) as a restriction t®?N of a complex analytic Hamil-
tonian systerwith complex timeé defined in a domai C 2N,
We call a functionf:D—C afirst integral of Eq. (10) if

{f.H}=D,f(2)-IN\D,H(2)=D,f(2)-z= %[f(z(t))]=0,
(12)

i.e.,fis constant along any trajectory of E4.0). Here the bracket
is the canonicalPoisson brackeiand represents the inner

won

=FGmNTH(m?, u(=sinjrz, j=12,... . product. We say that first integrafs, . .. f, (2<k=<N) arein
@) involution (on a sex if the Poisson bracketqf;,f;}=D,f;
For N>0 an integer, let -JND,f;=0 (on the setfor anyi#j, and that they aréndepen-
N dent(on a sexif D,f,, . ..,D,f, are independeribn the set The
_ . Hamiltonian systen(10) is said to bmeromorphigintegrablein
u(z,t)= zl ay(t)sinj mz, “) a setUCD if there areN (meromorphig first integrals which are
) o o in involution and independent on an open dense subset &fit
wherej;, 1=1,... N, are distinct, positive integers. Note thatis not (meromorphig integrable inU, it is said to be(meromor-

Eq. (4) satisfies the boundary conditiof®). Substitution of Eq.

(4) into Eq. (1) yields

N N
> {éﬁ(jlﬂ)z (j|77)2+r+%2 (j,m)2a? a|]sinj|7rz—0,
=1 r=1
(5)
from which we obtain
N
&+ (jym? (ym)?+ T+ 5 3 (rm)%a2|a=0, 1=1,... N.
r=1
(6)

Conversely, ifa(t), I=1,... N, satisfy Eq.(6), then Eq.(4)
gives anexactsolution of Eq.(1).

Scaling the time variable— wgt with wo=7I'+ 72 and the
coordinate variables asj— (m\k/2(I + 7?))a, in Eq. (6), we
have

N

él+wfa|+j,2(21j?a$)a.—o, I=1,...N, (7)
“

where w;=j (T + (j,m)?)/(T + ). Finally, settingx,=a, and
y,=a,, we obtain
N

X=Yi, YI__wIZXI_jIZ(EerXrZ)XIv [=1,... N, (8)

which is an N-degree-of-freedom Hamiltonian system with
Hamiltonian function

N

> e

I=1

2 1 N
52V ©
I=1

,yN) S ]RN.

1 1

_ = 2,2, =

Hn(XY) =5 ;1 X+ 7
wherex=(Xq, ... Xy) andy=(yq, . ..

3 Differential Galois Theory for Hamiltonian Systems

phic) nonintegrable inU. When the Hamiltonian systeifi0) is
integrable, we can obtain general solutions ugihfirst integrals
even if they are not complex analytig31]).

Let C be an integral curve of the Hamiltonian systé¢b®) and
denote byz(t) the trajectory ofC. Thevariational equationVE)
alongC is given by

£=I\DIH (zc(1)€ (13)
If there arek(<N) first integralsf,, ... ,f, which are in involu-
tion and independent in a neighborhood @, then ¢

=J\D,fi(zo(1)), i=1,... k, are solutions to Eq(13). Using
this fact, we can reduce E{L3) to a 2(N—k)-dimensional linear
differential equation called thenormal variational equation
(NVE) along C whenk such first integrals exis{24,25). Since
the Hamiltonian function is a first integral itself, we always have
a 2(N—1)-dimensional NVE alon@.

In the context of Eq(13), we now give background information
on the differential Galois theory for linear differential equations
([32-34)). See Appendix B for some basic algebraic terminolo-
gies. We first note that the coefficients of E#j3) can be generally
considered to be in the field of meromorphic functions i. Let
&1, ... &on be a fundamental system of solutions to EtB). A
set of rational functions of,, ... ,&y\ with coefficients inK,

which we denote by =K (&, . .. ,&n), is also a field. We refer
to L as thePicard-Vessiot extensioof K for Eq. (13), and define
the Galois groupof Eg. (13), G=Gak(L)=Gal(L/K), as the

ggroup of all (differential) automorphisms of such thaK is left

invariant. From a fundamental result in differential Galois theory
([32-34), Eqg. (13) is integrable in the meaning that its general
solution can be expressed by a combination of integrals, exponen-
tials of integrals, and algebraic functions of element&af and
only if the identity component of5, which we denote byG°,
is solvable. In particular, ifG° is abelian, then Eq(13) is
integrable.

In such a situation, extending a result of Zig|i85], Morales-
Ruiz and Ramig24,25 proved that if there ar&l meromorphic

In this and the next section we outline the differential Galoifirst integrals of Eq(10) which are in involution and independent
theory of Ref[24] for Hamiltonian systems and its application toover a neighborhood of (not necessarily o€ itself), then the
two-degree-of-freedom systems with potentials of a special formdentity component of the Galois group of the VB3) is abelian.
See Refs[24-27 for more details on the theory and results.  Moreover, ifk of the first integrals aréfunctionally) independent
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on C itself, then the identity component of the Galois group of the 71— (AP(t)+B)5,=0, (21)
associated 2Y—k)-dimensional NVE is abelian. Thus, if the ) i o ] o )
identity component of the Galois group of the VE or NVE is nowhereP(t) is the Weierstrass elliptic function, which is a solution
abelian, then the Hamiltonian systet0) is nonintegrable in the of

sense that there do not extmeromorphic first integrals which <o 3

are in involution and independent. (2)°=42"= 02— 93, (22)

The Galois groufs can generally be represented as a group of 3
nonsingular matrices with constant coefficients. So we only ha?/vheregz andg; are constants such that@%gzio, andA and

; P : Bare complex numbers.
to study the matrix representation in order to determine whegher Suppose that the NVE20) is of the type(21). Denotea(t,h)

is abelian(or whether it is solvable At present the task is often h .
routine to some extent. See, e.g., RERS), [33], [34], [36] and = a(x;(t)). Noting thatP, A, andB depend orh, we see that
references therein fo_r more details. In th_e next section we oytline &(t,h)=A(h)P(t,h)+B(h) (23)
one of such results in Ref§25], [36], which plays an essential

role in our analysis of the beam equatid and its finite-degree- must hold. SinceéP(t) satisfies Eq(22), we have

of-freedom mode truncatio(8).

X « 12B(h) .
4 Two-Degree-of-Freedom Systems With Potentials a®(t,h)= Ah) *(th)- A a’(t,h)
Now consider a two-degree-of-freedom canonical Hamiltonian 1282%(h)
system with a potentiaV(x4,X,), _ ) -
X]:y] ’ yj:_ﬁ(xllXZ)ﬁ j:lvz' (14) 483(h) 2
i - W+92A(h)8(h)—g3A (hy|, (24)
The Hamiltonian function for Eq(14) is
1 where we used Eq23). Let X;(«aq) be a(possibly multivaluey
H= 5(Y§+y§)+V(X1,X2)- (15) function such thaty(X,(ag)) = ag. Sincex*l‘(t) is a solution of
1
We also assume that the potentiais an analytic function irk? =X2+o(x7)=h, (25)
and has the form 2

we also have

a(t,h)=2[a’ (g (&(t, ) ILh= e(ky(&(t,h)].  (26)
whereg and « are analytic functions. WhelN=2, Eq.(8) has the pence by Eqs(24) and (26) we can write
form of Eq. (14) with

1 2 3
V(Xq1,X2) = @(X1) = za(xl)xz"‘o(xz) (16)

a?2=P,(&)+hPy(&), 27)

1 1
_ T 2, T4 2. :2:2.2
e(x)=F ot 71X, alxy)=—(wa+]1j2x). (17) whereP;(a), j=1,2, are cubic polynomials af, i.e.,

The (x1,y1) plane is invariant under the flow of E¢L4) and the Pi(a)=2g; al+ b; a2+Cja/+ dj, j=12 (28)

equations of motion restricted to it are with a;, bj, ¢, andd;, j=1,2, constants. Moreover, comparing

Eqgs.(26) and(27), we have
Pi(a)

X = - — ’ 2:_
We assume that on the invariant plane there exists a continuous e(X(@)) = Py(a)’ [a’(X)]7=5 Pa(a(xq)). (29)
family of integral curvesC,;, parametrized by the Hamiltonian . . . . .
energyh. _Conversely, if there are cubic polynomn&?,s(of), j=1,2, satisfy-
Let (x2(t),y"(t)) be the trajectory of Eq(18) for C,,. We also "9 EG- (29), then the NVE(20) is of the Lametype (21).

: . h h ) In this situation, using a result on the integrability of the Lame
denote byCy, the integral curve corresponding ®y(t),yx(t)) in equation(21) ([25,36]) and the differential Galois theory of Refs.

. . do
X1=Y1, Y1:_d_X1(X1)- (18)

the (x1,¥2,%2,Y2) space. The VE of E¢14) alongCy, is [24], [25] described in Sec. 3, Morales-Ruiz and Sif5,27]
) ) ) ?e ] proved that the Hamiltonian syste(fi4) is nonintegrable ifa,
b=&, E=&, LH=——(XN1)&, &=a(x|(t)&,  #0 orif none of the following conditions holds:
dx (i) a;=4/n(n+1) for someneN;

(i) a;=16/(4m?>—1) for somemeN, b,=0 and either

or equivalently (i) m=1 andb,=0;
- ,=0;

Lo . . (ib) m=2 andc,=16a,c,+3b?=0;
&+ d7§(xl(t))§1=0, &-a(xi()§=0.  (19) (iic) m=3, 16a;d,+11b,c,=10242d,+704a,b,c,+4503
=O’
The first equation of Eq(19) has a solutiort; =y’(t) due to the or
fact that the Hamiltonian function is a first integral. The NVE of (iid) m>3, b;=0 and either
Eq. (14) alongC, is (iid1) m=1, 2, 4 or 5 mod 6 and,=c,=0
. - h or
m=12, 7= (X (V) 1, (id2) mis odd andd,=d,=0;
or equivalently (iii) a;=4/n(n+1) with n+(1/2)e (1/3)2U (1/4)2U (1/5)2\7,
B h b,=0 and either
71— a(xy(t)) 7, =0, (20) (iiia) c,=b2—3a,c,=0;
which is a nontrivial part of the VE19). Morales-Ruiz and Simo or
[25,27] showed that, for several cases @fand « including Eq. (iiib) c2b1—3a1d2=2bf—9alblcl+ 27a§d1:0.
(17), the NVE (20) can be transformed into the Weierstrass form The condition(iid) was obtained based on a conjecture which
of the Lameequation([37]): was confirmed by a numerical computatidi25,27]). However,
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concerning conditior(ii), we only require the first equalitya;

=16/(4m2—1), later, and our main result, given in the next sec-

tion, does not depend on the conjecture.

5 Nonintegrability of the Straight Beam Model
We return to the “exact” finite-degree-of-freedom mod@j for

the straight beam. We first s&¢=2 and apply the theoretical

result stated in Sec. 4. From Eq47) and(29) we obtain

2
Py(a)= g-(a+ 03)?[ B+ wh) —2B,03],

Pa(a)=—8B1Bz(a+t w)), (30)
where,=j?2. Hence
2 6
a1=ﬂ, b1=*4w§+ﬂw§,
BZ 2
6 2
C1= ( — 8¢u§+ % w%) w%, d,= ( —4¢u§+ ﬂ w%) wg,
2
(31)
a=b,=0, Cc,=—8p,6,, d,= _8,31,320)%
Moreover, comparing Eq$24) and(27), we have
4 . 40?3 .
92=§(351h+w1)1 93=7(9ﬂ1h+2w1), (32)
so that
2793—g53=—1681h*(48ih+ 0?), (33)

which is nonzero unless=0.
First, we easily see that conditidiii) does not hold since,
#0 and

Czbl_ 3a1d2: - 32,8]_,32(1)%7E 0,
2b3—9a,b,c,+27a%d, = — 12805 +#0. (34)

Next, suppose that conditiofii) holds. Then we havea;/2
=j2/j2=2%/(4m?—1) so that we can writ¢,=2%p for somep
eN. Hence we obtainj5=2p?(4m?—1), which means that

4m?—1 is even. So, conditiotii) does not hold. Finally, suppose

that condition(i) holds and

i7 2
=
2

n(n+1)

(39)

for someneN. In fact, there are infinitely many pairg4(j,)
such that Eq(35) holds for somene N (see Appendix A of Ref.
[18] for a proof of this fact wherj;=1). However, unlesg;
=j,, i.e.,,n=1, there does not exist’' € N such that

n(n+1) 2

T n'(n'+1)°

i 2

(36)

X2
x10_54 —I T 1T 7T 17T ‘ L I;II LU l_
[ (b) \ ]
- v 1
2 LY .
s of 5
N Y ]
-2 f 3 1
C /A ]
_4 -I 11 1 1 Ii\-l | |\“l | T ] I_
-2 -1 0 1 2
X %107

Fig. 2 Orbits of the Poincare = map of Eq. (8) with N=2 for j,
=1, j,=2, w,=1, w,=3.2, and H=11. (b) is an enlargement of
(a) near the origin.

which consists oN— 1 independent Lamequations. Hence if all
the Galois groups for the Lamexjuations are not abelian, then the
Hamiltonian systent8) is nonintegrable. From the above discus-
sion we see that this is the case. Thus we have proven the nonin-
tegrability of Eq.(8) for N>2.

Finally we consider the infinite-degree-of-freedom systdm
Let A be a set of all solutions to E@l) given by

©

ut,z)=, a(t)sinjjrz, X, |a(t)|?<e. (39
=1 =1
Note thatu(t,z) e A always satisfies the boundary conditid2s,
and that conversely every “square integrable” solutig(t,z) of
Eqg. (1) satisfying Eq.(2) is present inA with some integer se-
quencejq, jo, ..., due to dundamental result on Fourier series
(e.g., Ref[37]). Suppose that there are the necessagy, infinite
number of first integrals for obtaining general solutions to @&g.
under the boundary conditioi2). Then one can express the solu-
tion (39) by these first integrals and hence E4) by some of
them. However, this is not the case because of the nonintegrability
of Eq. (8) for anyN=2. Therefore we see that the infinite-degree-
of-freedom systen(l) is nonintegrable.

Replacingl =1 with | =2 and applying the above arguments, we

easily prove the nonintegrability of Eq8) with N=2 near a

trajectory (;,y1,%2,y2) =(0,0,x5(t),y5(t)) where &5(t),y5(t))
is a solution of

X2=Y2,  ¥o= — 03X~ | 5X5. (37
In conclusion, the Hamiltonian systef8) is nonintegrable when
N=2.

We turn to the case dfi>2. We also denote b/, the integral
curve corresponding tox@(t),y'l‘(t)) in the full 2N-dimensional
phase space. The NVE of E) alongl'y, is

m+ (i +iZi8 A1) =0, 1=1,...N-1, (38)

Journal of Applied Mechanics

6 Numerical Simulations

To see whether the nonintegrability also implies the occurrence
of chaotic motions in the Hamiltonian systéB), numerical simu-
lations for N=2 were performed using a Fortran code called
“poprgsd ([38]). The code is based on the explicit Runge-Kutta
method of order 8 by Dormand and Prin@&9], and a fifth-order
error estimator with third-order correction is utilized. It also has a
dense output of order 7. See REB8] for more details on the
method. A tolerance of 10> was chosen in the computations so
that very precise results could be obtained.

Figure 2 shows orbits of the Poincameap for j;=1, j,=2,
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10-5 4 degree-of-freedom modéll). Moreover, we provided numerical
simulation results for a two-mode truncation system and observed
that chaotic motions occur as in typical nonintegrable Hamiltonian
systems.

Here we mention the nonintegrability of E¢l) when —T
e (w?,47%), i.e., when the beam is buckled and only the first
mode is unstable. In this case, the “exact” finite-degree-of-
freedom systen(8) becomes

N
X1=Y2, y1=X1_<21 jrzxrz)xln
=

Y2

-4 (42)

-2 2 N
T2 10°8 X=Y, Y|:w|2X|j|2<E erXrZ)Xl’ [=2,... N,
Fig. 3 Numerically computed staple and unstable manifolds of =t

a periodic orbit for the Poincare ~ map of Eq. (8) with N=2. The where we setj;=1, scaled the coordinate variables as

same parameter values as in Fig. 2 are taken. aj— (= k2(T + 79)), and replaced o, by o
:77\/—(1“+772) and o =jV—((jm)*+D)(T+=w?), |
=2,... N. ForN=2, we compute the coefficients &(«), |

w;=1, w,=3.2, andH=11. Here we take as a Poincasection =1,2, as

the three-dimensional hyperplafigx,y) e R2X R?|x,=0,y,>0}.

To obtain a point at which a computed trajectory intersects the b, =4+ %wz C=
Poincaresection, an intervalt,_,,t,] of numerical integration ! B, & 1t
such thatx,(t,_;)<0 and x,(t,)=0 was searched and the

method of bisection was used for the interval with a tolerance of d :(4+ %wz) w? (43)
|x;|<107'2 Figure 2b), which was obtained by performing ! 2|72

B2
20,000 iterations of the Poincareap, suggests that chaotic Mo, o the other coefficients are the same as ones in (&1,

tions occur although they exist only in a very narrow region of thﬁepeating the arguments given in Sec. 5, we can show that the

phasg space. . . finite-degree-of-freedom syste2) with N=2 and the infinite-
Ithls casy (0 see that the periodic orbik;(ys Xz y2) degree-of-freedom systel) with —I" e (#2,472) are noninte-

= (x3(t),y1(1),0,0) corresponding to the origin in Fig. 2 is Un-grapie |n particular, the two-mode truncation is nonintegrable

stable. Actually, the NVE for the periodic orbit is near integral curves on the{,y,) plane including a pair of ho-

6
8+ ﬂw%)w%,
2

72+ (03423 X8(1)1?) 7,=0, (40) moclinic orbits if
which is a special case of Hill's equatidsee e.g., Ref[10]), 5, nN(n+1) \
wherex{(t) is a solution of 2% — for any nel\, (44)
X1+ 02X+ x3=0. (41) Wwhich was also proven by a Melnikov-type technique of R&6]

. ) ) ) ) in Ref. [18] to give a criterion for the existence of chaos in the
In general, Hill's equation has wide parameter regions of instabiysiem. Thus we expect that there is a close relation between
ity, and so does Eq(40). Such an unstable periodic orbit has,onintegrability and chaotic dynamics of Hamiltonian systems. In

stable and unstable manifolds, which are supposed to intersgel general results for such a relation in two-degree-of-freedom
transversely. Their transversal intersection is responsible for tems were given in Refi25], [28], [29].

occurrence of chaotic motions by the Smale-Birkhoff homocliniC” There has been much work on chaotic vibrations of “forced”

theorem([11,12). _ and “damped” beamge.g., Refs.[11], [13], [15], [22], [23]).
Figure 3 shows numerically computed stable and unstablg,yever, in these researches, it is assumed that “unforced” and

manifolds of the periodic orbit for the Poincameap of Eq.(8). To “undamped” beams are integrable, and one analyzes the forced

draw Fig. 3, a software calledoynamics” ([40]) with the assis- ang damped beams. So we have the following question: What

tance of the C version afopss3([38]) was used, and 5000 pointsgye| pehavior arises in forced and damped beams from the non-

on small segments with lengths of about 60 ° in the stable and integrability of unforced and undamped ones? This will be a chal-

unstable directions were iterated by the Poincawa up to 95 |enging problem. A partial answer is given elsewh@rs)).

times. Since the computation was performed with very small er- Since our discovery of chaos we have often seen that the dy-

rors (~1019), the 95th iterate of the Poincaraap could be namics of simple systems are not so simple as we thought. The

computed with very high accuracy. See Rd#l], [42] for the result given here also suggests that we should take the lesson to

details on the method. We see that the stable and unstable m@eiart once more.

folds intersect transversely and the occurrence of chaos i8Eg.

indicated by Fig. @) is not an artifact of numerical errors. Thus

we observe numerically that chaotic orbits exist in the two mod&icknowledgments

truncation and hence in the original beam equatn The author thanks the anonymous referees and the Associate
) Editor for helpful comments and suggestions, which have im-
7 Concluding Remarks proved this work.

In this paper, we have studied the infinite-degree-of-freedom
model(1) for unforced and undamped, initially straight beams ang pendix A: Description of Eq. (1) as a Hamiltonian
showed that it is nonintegrable in a specific sense. We first deriv, -
“exact” finite-degree-ofg‘reedom m%dal truncations for the stem in the Abstract Framework
model, and proved that arly(>1)-modal truncations are nonin- In the geometric theory of mechanifg!3,44)) we can regard
tegrable in the sense that there do not ekisheromorphic first Eg. (1) as an infinite-degree-of-freedom Hamiltonian system.
integrals which are independent and in involution. We also Let X=7%20,1]x £[0,1], where*[0,1] is the space of func-
showed that this implies the nonintegrability of the infinitetions on the interval0,1] which are square integrable along with
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their first derivatives, and:?[0,1] is the space of square inte-t0 besol_vgbleif it has an abelian tower such _that the Ias; e_Ie_ment
grable functions on[0,1]. The inner product forw;=(u;,v;) IS the trivial subgrougs,,={e}. Obviously,G is solvable if it is

€ X, j=1,2, is given by abelian sinc_eGD{e} is an abelian tower. _
. We now introduce some more general concepts. ANes
called amonoidif it has an associative law of composition and a
= . Al - . )
(wy,w2) fo W1(2)-Wy(2)dz, AL nit element. A groufs is a monoid such that every element has

] ) an inverse. Aing is a setR with two laws of composition called
where “.” represents a usual inner product itf. We equip the addition @+b) and multiplication @b) if it is a commutative

functional spacet with a symplectic form group with respect to the addition and a semigroup with respect to
1 the multiplication and the distributive law holds, i.@(b+c)
Q(wy,W,)= J [uv,—v4uy]dz (A2) =ab+acand @+b)+c=ac+bc, wherea, b, ceR. The unit
0 element of the addition is also referred to as zeeoelement and

denoted by 0. Aringd- is said to be dield if the multiplication has
a unit element denoted by 1 and every nonzero element has an
1 2 2 inverse element. For example, the §eof all rational numbers is
f (u’) dz} , a field with usual addition and multiplication.
(A3) Let M, M’ be monoids. Ahomomorphisnof M into M’ is a
) ] mappingf:M—M' such thaff (xy)=f(x)f(y) forallx,ye M. A
wherew=(u,v), wj=(uj,v;) e X, j=1,2. So we can write EQ. homomorphismf:M—M’ is called anisomorphismif there is a
(1) as homomorphismg:M’—M such that composite mappingsg
W= X (W), (A4) andgef are the identity mappings iM' and M, respectively.

wherew=(u,v) e X and X, represents a vector field such thaﬂ%%%“g;)msﬁaﬂgmgmgﬁngrggsefg\g?;phlsm are called an

Q(Xp(wy),wo) =(DyH(wi),w;). Here QH represents th&a- Let X be a topological space. Théhis said to berreducible if

teaux derivativedefined by X cannot be written as the union of two proper, nonempty, closed
1 subsets. A subspacdéof X is called irreducible if it is irreducible
(DyH(w),h)= lim—[H(w-+th)—H(w)] (A5) as a topological space. Every irreducible subspac¥ & con-
t—0 tained in a maximal one, which is called mreducible component
for anyhe X. Note thatH (¢ (w))=H(w), i.e., the Hamiltonian of X. For C", wheren is a positive integer, one can define a
energy is conserved under the floyy, where ¢, is the flow topology in which sets consisting of zeros of polynomials with
generated by EqA4), i.e., by Eq.(1). unknown variables and their intersections are closed. This topol-
ogy is called thezariski topology Since the Galois grou@® can
be represented as a group of, sayn, nonsingular matrices as
Appendix B: Some Fundamental Concepts From Alge- stated in the last paragraph of Sec. 3, we introduce the Zariski

bra topology inG, which is subset of"’. An irreducible component
G containing the unit elemerg which is unique, is called the
entity componemnf G. See Refs32—34 and references therein
@{ more details.

and a Hamiltonian function

11 K
Hw)= > fo [v2+T(u")?+(u")?]dz+ 7

In this appendix we gather some necessary concepts from al
bra for convenience of the reader. See, e.g., RE] for more
details except some of terminologies in the last paragraph, whi
come from introductory concepts of linear algebraic groups.

A set Swith a law of composition ¢” is called asemigroupf References

the associative law h0|dS, €., for aay b' ceSone has é‘ob) [1] Woinowsky-Krieger, S., 1950, “The Effect of an Axial Force on the Vibration

ec=ac(bec). A group Gis a semigroup such that it hasuait of Hinged Bars,” ASME J. Appl. Mech.17, pp. 35—36.

element €(i.e., ace=a for all ae G) and aninverse element’a  [2] Burgreen, D., 1951, “Free Vibrations of a Pin-Ended Column With Constant
f r— ; _ Distance Between Pin Ends,” ASME J. Appl. Mech8, pp. 135-139.

fO’r eachacG (e, a?a .e)' We easily sge thaEca. a and [3] Eisley, J. G., 1964, “Nonlinear Vibration of Beams and Rectangular Plates,”

a’ca=e. 'I_'he groupG is salo! to becommutativeor abelianif the Z. Angew. Math. Phys.15, pp. 167—175.

commutative law also holdg.e., acb=bea for anya, be G). A [4] Srinivasan, A. V., 1966, “Nonlinear Vibrations of Beams and Plates,” Int. J.

subgroup Hof G is a subset 06 such thaH itself is a group with Non-Linear Mech. 1, pp. 179-191.

P . [5] Ray, J. D., and Bert, C. W., 1969, “Nonlinear Vibrations of a Beam With
the same law of composition. In the following we drop the symbol Pinned Ends,” ASME J. Eng. Indg1. pp. 997—1004.

“o" and write the law of composition_like multiplication unless We [g] Bennet, J. A., and Eisley, J. G., 1970, “A Multiple Degree-of-Freedom Ap-
treat two or more laws of composition. proach to Nonlinear Beam Vibrations,” AIAA J§, pp. 734-739.
Let G be a group and leitl be a subgroup of. A left cosetof [7] Tseng, W. Y., and Dugundii, J., 1970, “Nonlinear Vibrations of a Beam Under

H ; — Harmonic Excitation,” ASME J. Appl. Mech37, pp. 292-297.
Hin G is a subset ofG of type aH {aX|X€ H} for somea [8] Bennett, J. A., and Rinkel, R. L., 1972, “Ultraharmonic Vibrations of Nonlin-

e G, and aright cosetof H in G is a subset of5 of type Ha for ear Beams,” AIAA J.,10, pp. 715-716.
someae G. The subgrouH is said to benormal if xH=HXx, [9] Bennett, J. A., 1973, “Ultraharmonic Motion of a Viscously Damped Nonlin-
which is often rewritten axHx '=H, for all xeG. If H is ear Beams,” AIAA J.,1L pp. 710-715.

. . [10] Nayfeh, A. H., and Mook, D. T., 197%onlinear OscillationsJohn Wiley and
normal, then a left coset dfl is equal to a right coset so that we Sons, New York.

do not need to distinguish between them. SupposeHhatnor-  [11] Guckenheimer, J., and Holmes, P. J., 1988nlinear Oscillations, Dynamical
mal and letG’' be a set of cosets dfi. If xH, yHe G’, then Systems, and Bifurcations of Vector Figl@pringer-Verlag, New York.
xHyH=xyHe G'. We easily see thaG' is a group with this [12] Wiggins, S., 1990Introduction to Applied Nonlinear Dynamical Systems and

2. . . . Chaos Springer-Verlag, New York.
product as a law of composition. In particulétis a unit element  [13] Holmes, P. J.,, and Marsden, J. E., 1981, “A Partial Differential Equation With

andx~H is an inverse element ofH e G’. We writeG’ asG/H Infinitely Many Periodic Orbits: Chaotic Oscillations of a Forced Beam,”
i Arch. Ration. Mech. Anal.76, pp. 135-165.
ang call it thefacftor groupOf Gfby H. [14] Tseng, W. Y., and Dugundji, J., 1971, “Nonlinear Vibrations of a Buckled
sequence of subgroups of a groGp Beam Under Harmonic Excitation,” ASME J. Appl. Mecl88, pp. 467—476.
_ [15] Moon, F. C., and Holmes, P. J., 1979, “A Magnetoelastic Strange Attractor,” J.
G=GyDGD...0Gy, (B1) Sound Vib.,65, pp. 275—296.
is called atower. The tower is said to beormalif G; 1 is normal [16] Yagasaki, K., 2000, “Horseshoes in Two-Degree-of-Freedom Hamiltonian
- i+

. R ; : L AT Systems With Saddle-Centers,” Arch. Ration. Mech. Anab4(2000, pp.
in G; fori=0,... m—1. Itis said to beabelianif it is normal 2%/5_296. 12000, pp

and if each factor grou; /G;, 1 is abelian. The grouf® is said  [17] Yagasaki, K., 2003, “Homoclinic and Heteroclinic Orbits to Invariant Tori in
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Equilibrium and Belt-Pulley
Vibration Coupling in Serpentine
wiXone 1 Belt Drives

. R. G. Parker Serpentine belt drives with spring-loaded tensioners are now widely used in the automo-
Corresponding Author, Mem.ASME tive industry. Experimental measurements show that linear system vibration coupling
e-mail: parker.242@osu.edu exists between the pulley rotations and the transverse span deflections. Former models
. o that treat the belt as a string and neglect the belt bending stiffness cannot explain this
Department of Mechanical Engineering, coupling phenomenon. In this paper, a new serpentine belt system model incorporating
The Ohio State University, the belt bending stiffness is established. The finite belt bending stiffness causes nontrivial
206 W 18th Avenue, transverse span equilibria, in contrast to string models with straight span equilibria.
Columbus, OH 43210 Nontrivial span equilibria cause linear span-pulley coupling, and the degree of coupling
(614)-688-3922 is determined by the equilibrium curvatures. A computational method based on boundary

value problem solvers is developed to obtain the numerically exact solution of the non-
linear equilibrium equations. An approximate analytical solution of closed-form is also
obtained for the case of small bending stiffness. Based on these solutions, the effects of
design variables on the equilibrium deflections and span-pulley coupling are investigated.
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Introduction bending stiffness are formulated using Hamilton’s principle for a
three-pulley system. The equations show that vibration coupling

Serpentine belt drives with multiribbed belts of small sectionxists between spans away from the tensioner and the pulley ro-
heights are commonly used in the automobile industry to drive P y putiey

accessories such as the alternator, air condition, power steerfitC"S: The mechanism of the coupling depends upon the equilib-
UM curvature of the spans. Correspondingly, a coupling indicator

pump, and so on. A prominent characteristic of such systems is the

introduction of a spring-loaded tensioner assembly, which grea 2L d(_etermmed_ by t_he equmb_rlum state is defined to measure
e magnitude of vibration coupling of the whole system, where

improves the system dynamic performance by automatically coip- denotes the coupling indicator for individual spans.
pensating for tension changes as accessories are activated or d‘f”he main work of this paper is to determine the span equilib-

activate_d. I rium deflections from the set of nonlinear equations. The equilib-
Considerable research has been done on the vibration of serpelf]- )

tine belt systems since their wide application about two decaddd™ equations are dlff_erentlal-lntegral _equatlons_cogpled W'th_
. f - . -Seéveral algebraic equations. A key step is the application of ordi-
ago. Most studies consider only the pulley rotational motions with)

the belt acting only as a longitudinal stiffnefsis-4]. In contrast nary differential equatiofODE) conversion techniques to refor-

. 7 . . ulate the governing equations into a standard boundary value
Beikmann et al[5-7] treated the belt as a continuum string an&nroblem(BVP) form that can be readily accepted by generalpur-

developed a prototypical model consisting of three pulleys and’y

- ' ; . se BVP solver codd®]. Taking advantage of the reliability and
tensioner. This model captures linear coupling only between tﬁ%h performance ofi{ngdem Bg\;/P solvergcodes almost eiact nu-

tensioner rotation and the transverse vibration of the two SPaNS. ical results are found with little programming effort. For the
adjacent to the tensioner, see Fig. 1. This coupling results from_ . programming . .
actically important case of small dimensionless bending stiff-

tensioner rotation moving the boundary points of the two adjace%rt . X . .
1ess, singular perturbation techniques are used to derive an ap-

spans. For spans away from the tensioner bounded by fixed p mate closed-f luti
leys, the belt is modeled as an axially moving string whose boun%r-ox'm%e ¢ ohse orm solu Ilon'd vtical soluti he eff f
ary points have no transverse deflections, thereby decoupling thgased on these numerical and analytical solutions, the effects o
span vibrations from pulley rotations. Parkig] used similar Mot design variables on the equilibrium deflections and cou-
modeling to analyze vibration of a generapulley system. Beik- pling indicators z_ire_lnvestlgated. _The an_alytlcal Solutlc_)n expl_|C|tIy
mann’s experimentg6,7], however, show a degree of Iinearreveals the qualitative and quantitative impact of design variables
coupling between pulley rotations and the span transverse vibra-
tions between fixed pulleys, which can be excited despite the fact
that the motions of the two end pulleys are only along the axis of
the span treated as a string. Observations on current automobiles
also demonstrate strong, apparently linear coupling where pulle
rotations excite undesirable transverse vibration of the adjacer
spans.

In this paper, general equations of motion that incorporate bel

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 17,
2002; final revision, Sept. 27, 2002. Associate Editor: N. C. Perkins. Discussion
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De =g;
partment of Mechanical and Environmental Engineering University of California— s
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until fou.
months after final publication of the paper itself in the ASMBURNAL OF APPLIED
MECHANICS. Fig. 1 A prototypical three-pulley serpentine belt drive system
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on the span equilibria and magnitude of the vibration coupling. A (4]
closed-form approximation for the coupling indicator captures this _
information in a simple expression. parallel to

The equilibrium solution presented here is essential for subsegpang 1,2
qguent dynamic analysis of coupled belt-pulley serpentine drive
vibration[10].

System Model Bz:etr—g‘-’

The prototypical system of Fig. 1 was first used by Beikmann
et al. [5-7] to study the vibration of serpentine belt systems. It
contains the essential components in automotive serpentiﬂe 5 Detail of tensioner region and pulley 2. defining alian-
drives: a driving pulley(pulley 1), a driven pulley(pulley 3, mgﬁt angles 9 pulley < g alg
a belt, and a spring-loaded tensioner assembly. The tensioner
assembly consists of a tensioner arm spring-loaded at its pivot MO —=El/r MO =El/r @)
with an idler pulley(pulley 2 in contact with the belt. The acces- S S E E»
sory driving torquesM,(t) and M;(t) are present, buM,(t) whererg andrg are the radii of the pulleys that bound a span
=0 for the idler pulley.(See Nomenclature for definitions of the[11,12.
symbols) The kinematic constraints are obtained from Figs. 1 and 2,

The dynamic motions are the pulley rotatioggt), i=1,2,3, _ _
the tensioner arm rotatiofy(t), and the transversev(x; ,t)) and Wi(0) =0, wy(ly,)=rf; cosp, ©)
longitudinal u;(x;,t)) _displacemen_ts of gach belt span. The spans u(0t)=—rq0¢, uy(lq,t)=—r,0,—r1.6,SinBq, (6)
are modeled as continua translating with constant sjgeé&thch
span is subjected to constant moments at its ends arising from the Wa(0)=ri6;cosps,  wy(l2,t)=0, @)
bending of the belt around the pulleys. No microslip or gross slip Un(0)=—T20,— 16, SiNBy, Ux(l,,t)=—Tr365, (8)
is considered at the belt-pulley interface, which is taken to be a
single contact point that does not vary with belt motfda,12]. w3(0)=0, ws(l3,t)=0, 9)

All motions are measured relative to a reference state. The ref- - -
erence state corresponds to the equilibrium for a stationary belt Us(08)=—r30s, .u3(l3,_t) f161, (19)
with no bending stiffness, that is, the equilibrium for the systetyhere 81 ,= 6, —{;, are the orientation angles of the tensioner
with the belt modeled as a string. Steady accessory torques @@ relative to the two spans adjacent to the tensioner. For the
present in the reference state, so different spans may have difégtails of the tensioner alignment, see Fig. 2. The positive direc-
ent reference state tensions. Beikmann et[@l. presented a tion of w; is always to the inside of the belt loop, the positive
method to calculate the reference equilibrium. Measuring di§irection ofu; is counterclockwise, and the positive direction of
placements from this reference state clearly shows the effectR$fit travelc is clockwise;6, , 6, are positive counterclockwisé;
belt bending stiffness. is positive if its rotation is in the direction of belt travel; is the

Consider the reference equilibrium when all accessory torqu@Bgdle from due east to thitsideof theith span; the pulleys and
are zero. In this case, all span tensions Rge which is used in Spans are numbered sequentially in the counterclockwise direction

the Subsequent nondimensionalization procedure_ (FIgS 1 and 2 The definition of the tensioner orientation Using
The equations of motions are derived from Hamilton's prinB1,2 differs from prior researct{5-7,13; this new definition
ciple. The kinetic energy is seems easier to understand, although the two approaches are
equivalent.
13 c -\?2 1 = ° i1 5 Application of Hamilton’s principle yields the equations of mo-
T= E; Ji f_i+ O] + 5 +Zl . 2 ML(Wi = CWi ) tion. The field equations for the spans are
1
+ (U~ CU; ,—c)?]dx;, (1) MW, = 2CW; g+ C2Wi ) — [ [ EA| uj x+ EWiz,x +P; Wi,x]
X
where J;=J ;mt+ mzrtz, Jarm IS the rotational inertia of the ten- _ o
sioner armm, is the mass of the tensioner pulley, atgis the +HEIW; =0, 1=1,2,3, 1)
absoluterotation angle of the tensioner idler pullégs opposed to 1,
rotation relative to the tensioner arnThe potential energy is M(U; 1= 2CU; x¢+ C2U; y) —| EA| U+ §Wi,x) +Pi| =0,
WX
1 .
V=sk(bt Br)? i=1,2,3. (12)

For practical serpentine drives, the longitudinal stiffn&ss is

much greater than the transverse stiffness from belt tension and
ax;, bending. As a consequence, longitudinal waves propagate much

more rapidly than transverse waves, and one may adopjuae

2) sistatic assumptiofl4]. Under this assumption, the inertia terms

. . . ) are neglected in the field equations for longitudinal motion, and
where 6, is the rotation angle of the tensioner arm in the refert-he dvnamic tensioB A(U: -+ 1/20W2.) becomes uniform throuah-
ence statéFig. 2). The virtual work is y (Ui x i) 9

out the span,

> [W[EA[ P, 1 .\2 1
A T 2 ow |+ ZEwm?
+3 ” . (EA+U,,X+2W,,X) LZEN,,

3 3 3
i (i ~ 1 EA
&N:iZl Mg)é\/vi,x(oft)-i-izl M dw; (1 ,t)—iz1 M; 56, Pi(t)=EA| u; ,+ Ewﬁx) =1 up(li,t)—u;(0}t)
= = = i
©) o
WhereMg) is the end moment on thiéh span start point anﬁ'lg) +f I—wizx(xi bdx |, i=1,2,3. (13)
is the end moment on thiéh span end point. Beam theory applied 02 "

to the belt at the pulley contact point requires
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The transverse vibration equations become
M(W; 11— 2CW; ¢+ C?Wi 50) — [ (P + Pp)W; 4] &

+EIWj yxxx=0, i=1,2,3, (14)

El
Wl(O,t)=0, EIW]_'XX(O,t): H,

El
ElWl,xx(let):_Ey (15)

wy(l1,t)=r.6,cosB,,

El
Elw,0(00) =~ —,
2

Wy(0,t)=r6; cosp,,
El
W2(|21t):O! ElWZ,XX(Ith):Ev (16)
El
W3(O,t):O, E|W3,XX(O't): r_, W3(|3,t):O,
3

El
Elwgu(ls,t)= 7% 17

The equations for the tensioner and pulleys are
30+ K, B+ [mews (1) + (Py— M2+ Pywy (1)
+EIWy (11)Iry COSB1+ (M@~ Py)ry sin By
~[MCWs(0) +(Po =M+ Py)Wy,(0)
+E W, (0) 1 COSB,— (MG~ P,)r, SinB,=0,

(18)
J160,+Pyry—Pary=0, (19)
szz—ﬁlr2+l32r2=0, (20)
J303— Pol g+ Par3=0, (21)

where

-~ EA , b1
P]_:l_ rzezfrlalfrtﬁt Sln,81+ Elede y (22)
1 0

-~ EA , 1
P2:_| r3037r202+rt0t S|nﬁz+ EWZVXdX y (23)
2 0

~ EA 51
P3:_ I’101*I’303+ _WSXdX . (24)
|3 0 2 ’

I I
W3(0)=0, W3,xx(0): i, W3(1)=0, W3,XX(1)= r—3,

Eliminating time derivative terms and dropping the hat on di-
mensionless variables yields the nondimensional equilibrium
equations

| 2
I_) Wi,xxxx_[Pi_52+Ti]Wi,xx:0: 0<x<1, =123,
I
(26)
Iy
W]_(O):O, Wl,xx(o): E,
It Iy
wy(1)= Ecosﬁlgt- W y(1)=— 0 (27)
It I,
w,(0)= Ecosﬁzat v Wou(0)=— E:
P
w,(1)=0, W2,xx(l): T (28)

s

1
(29)
| 2
[_(P1_52+T1)W1‘X<1)+82(|_ Wl,xxx(l) COSBl,
1
| 2
_{_(P2_52+T2)W2,x(0)+82 r) Wo,x(0) |COSB5,
2
+(T,—s%)sinB;—(T,—s?)sin B,— kg6, =0, (30)
Tl_T3=O, (31)
—T,+T,=0, (32)
—T,+T3=0, (33)

with the dimensionless tensions

T—El— "2 gt o g singyt [ —we.d
1—P_0—‘Y H 2 E 1 H ¢ Sin B4 OEW” X/,
(34)
P, rs ry re ) 11
T2=P—=y(—|—03+|—02+|—0tsm,82+ Engdx ,
0 2 2 2 0
(35)
P r r 11
Po I3 I3 02 7

Equations(26)—(36) are a mixed differential-integral-algebraic

system. The unknowns ai%, w;, and ;. The design variables

Note that the reference state equilibrium equatier,r, sin 3,
+P,rsinBo+k 6,=0, Pir{—P3r;+M;=0, —P;ro+P,r,=0,

that control the equilibrium span deflections are the initial span
tensionsP; , bending stiffness?, speeds, tensioner spring stiff-

and —Pory+Pargt+M;=0 have been used to simplify Egs.nessk,, longitudinal belt stiffnessy, and drive geometry.

(18)—(21).
The following nondimensional variables are defined:

o X W li+1+13 . Pg
X=r, W=, l=——m—, t=t\/—,
[ l; 3 ml

0 0 (25)

5 El _ /fm K= k, 7EA
E—W, S=C P S_POrt, V—P—O,

wherePy is the initial tension of the string model at rest with no
accessory torques, as mentioned previously.the characteristic
length taken as the average span length.

Journal of Applied Mechanics

From the pulley Eqs(31)—(33),

T1:T2:T3:T. (37)

From Eqgs.(34)—(36),

T, r r r l, (11
—1—1=——202+—101——t6tsin,31+|—1j —w},dx,

y 1 | I | 02
(38)
T, | r r r o (11
223y 2,4 o sing,+ 2 | S wddx,
| [ | | I Jo2 %
(39)
T3 |3 r M3 |3 11 2
7|———|—01+|—93+|_ OEW&de- (40)
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Addition of Egs.(38), (39), and(40) and substitution of the rela- and(55) below. This conveniently draws the discrete variable

tion (37) yield Egs.(41) and(43) into the continuum BVP formulation.
li+l+1\ T Iy (11, I (1, This process yields the following differential equations:
T )y T ) 2 Wedx ) 5 WadX
Y 0 0 T,=0, 6,,=0, 0<x<1, (48)
e ML gus sing,—singya-0. (a1 L) P 12
I 02 WaxdX I (sin By =sin B2) 6,=0. (41) Wi xxxx™ ? |_ (Pi—s +T)Wi,xx:0v |i,x:§Wi,xv

Defining T as the new unknown variable and substituting Eq. -
(37) into Egs.(26) and(30) gives 1=1,2,3, O<x<1, (49)
with boundary conditions

| 2
ez(ﬂ WLXXXX—(Pi—SZ+T)W1’XX=0, 0<x<1, i=1,2,3, 1,(0)=0, 1,(0)=0, 15(0)=0, (50)
(42) r
[)2 w1(0)=0, W1(1):|—005,3191(1),
[—(P1—52+T)W1)((1)+82(E Wi (1) |COSBy | 1 |
e Win(0)= 2, Wig(1)=— =, (51)
_{_(P2_52+T)W2,x(0)+82 |_) W2,xxx(0) COSBZ ! 2
2 r
(43) Wa(0)= [~ 08B (1),  Wy(1)=0,

+(T—s?)sinB;— (T—s?)sin B,— ks, =0. | |
2 2
Equations(41)—(43) and boundary condition®7)—(29) define Wou 0) ===, Woud1)=, (52)
a simplified nondimensional system that is equivalent to the origi- 2 3

nal system(26)—(36). Compared with the original equilibrium I3

I5
equations, the variableg and T replaced, and 6;, i=1,2,3. w3(0)=0, Ww3(1)=0, Wzu(0)= Ty W3x(1)= T
. . (53)
Numerical Solution
) li+l+151 Iy I, I3
The above system consists of boundary value prolBXP) — =T =T 1(1)— 1) — —13(1)
Egs.(42) coupled with algebraic Eq§41) and(43). The boundary ' Y ' ' '
conditions (27) and (28) for the two spans adjacent to the ten- r
sionerw,; andw, are nontrivial and coupled with the tensioner + —(sinB;—sinB,) 6,(1)=0, (54)
rotation 6, . The algebraic Eq41) contains integral terms involv- I
ing thew; . Furthermore, all equations are nonlinear. The combi- [)\2
nation of these characteristics initially makes it seem difficult to —(P1—52+T(1))W1X(1)+82(— Wi xx(1) |COSB;
formulate an accurate numerical solution. By applying ODE con- ' Iy
version techniques, however, the above system can be transformed 112
into a standard form defined on the inter{@J/1] [9]. This formu- —[—(P2—52+T(1))w2,x(0)+a2 l—) Wy xx(0) |COS3,
lation can be accepted by general-purpose BVP solvers yielding 2
ﬁ:)iz\éenlent and highly accurate solutions with minimal program- +(T(1)—s?)sin B, — (T(1) — s?)sin B, — keb,(1) =0.
The standard form required for most BVP solvers is (55)
y' () =f(x,y(x)), a<x<b, (44) Notice that the 17 boundary conditiortS0)—(55) equal the
total order of the eight differential Eqg48)—(49). Equations
g(y(a),y(b))=0, (45) (48 —(55) involving higher derivatives can be readily reduced to

wheref, y, andg are n-dimensional vectors anflandg may be standard first-order form44)—(45) with the definitionsy,(x)
nonlinear[9]. This standard form cannot contain integral terms of W1(X), ¥2(X) =W1(x), y1(X)=y(x), and so on. Also note
algebraic equations as are present in the current system. that the problem is cast entirely on the intervat[0,1] even

To adapt the belt drive equilibrium equations to standard forrff?0Ugh the problem involves multiple spans of different lengths.
the following three conversion techniques are used: This standard form is readily implemented in BVP solver soft-

ware. Here, the solver BVP4C in the Matlab software is adopted
 Define the constant§ and 6; as functionsT=T(x), 6, [15].
= 6,(x) governed by This approach for solving the equilibrium problem of coupled
continuous-discrete systems has several advantages:
dT(x) dé,(x)

“ax % Tax 0 O<x<l. (46) . Itis easy to implement in readily available professional soft-
ware once the problem is cast in standard form. This mini-
mizes software development needs and setup time.

For the integral terms in the algebraic equation, defj()

— 2 ; ;

= [p1/2w; ,do, which gives » Second, with the high quality and robustness of general-
dix) 1 purpose codes, the numerical results can be excellent. For
T:EW& 1,(0)=0, i=1,2,3. (47) example, in this study the relative tolerance ReH0I001

) - o ) was used for the BVP4C calculations, which is a high crite-
Ii(1) is then equivalent to the original integral terms  rion for numerical computatiofiL5]. Because there is no spa-

f%,l/Z\Nﬁxdx in Eq. (40). tial discretization, the final results can be viewed as numeri-
« With T and 6, defined as functions of as in Eq.(46) and the cally exact.

definition of I;(x) in Eq. (47), the algebraic Eqsi41) and * Finally, the method can be extended to other nonlinear,

(43) are treated as boundary conditions as seen in &4s. continuous-discrete BVP systems. By applying similar con-
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Table 1 Physical properties of the prototypical system

Pulley 1 Pulley 2 Pulley 3 Tensioner
Center (0.5525 m, 0.0556 (0.3477 m, 0.05715 jn 0,0 (0.2508 m, 0.0635 in
Radius 0.0889 m 0.0452 m 0.02697 m 0.097 m
Other
Physical properties Belt moduluE:A=120,000 N

Span lengthst;=0.1548 m,l,=0.3449 m,| ;=0.5518 m
Tensioner spring stiffnes&, =116.4 N-m/rad
Tensioner rotation at reference stafig:==0.1688 rad

Calculated Belt tension at reference stdtg=300 N
values Tensioner alignment anglgd:=135.79 deg,8,=178.74 deg

version techniques, these systems can be transformed intboa coupling is determined mainly by the equilibrium curvature
standard BVP system. The algebraic equations associatdceach span. For example, the linearized equation for span 3 is
with the discrete variable®.g., tensioner rotationgypically

o |3\ 2 |3 _ 2
. 2
serve as boundary conditions (I_) Wag— ZSTW3,xt_ PoWa ot & B W e
Numerical Results and Discussion ry , ra , 1 R
. . . I - —— 0+ — 03+ W3, W. X|w3,,=0,
In this section, numerical equilibrium results are presented for a Y PREEN PR 0 3xT3x 3xx

prototypical three-pulley serpentine belt system. The physical
properties shown in Table 1 are drawn from R¢$s-7]. Equilib- (56)
rium deflections are plotted in three-dimensional perspective fghere ESZ Py—s?+P%, P = —r1/130% +15/1,6%
span 1 adjacent to the tensoner and span 3 away from the ten (1)1/2(W§Yx)2dx], the asterisk denotes the equilibrium configu-

sioner. Tensioner rotation are evident from these plots usnpgéon’ andws, 6, and 6, are small vibrations about equilibrium
w;y(1)=r./l, cospb.

Figure 3 shows that nondimensional bending stiffnegs
strongly influences the equilibrium deflections. When bending
stiffness increases, the equilibrium deflection increases marked|
When ¢? is small, there are boundary layers in the equilibrium
deflections. Ass? grows larger, the boundary layers become less 4
pronounced and the equilibrium deflections become bigger ar
smoother. Approximating the bending stiffness of a poly-ribbecg
belt typical of vehicle applications byEl=(m—1)2.867 &
x 10 3N-m? (wherem is the number of ribs reasonable values <&
of ¢ fall in the range 0.0%¢=<0.12. .

Figure 4 illustrates the influences of tensidhson the equilib- g
rium deflections. The unequal ranges of these tensions shown g-092+-
Fig. 4 result from calculating span tension variations as the steac
accessory torqued ;, M3 (M3z=—(r3/r;)M,) are varied across preoe
0=<M;=<37.34 Nm. Notice that the variation range of the ten-
sions of the two spans adjacent to the tensiddgr P, is much
smaller than that of the third spd. This occurs because, when
the accessory torques change, the tensioner assembly compens
for the tension loss or gain to stabilize the tensions of the tw¢
spans adjacent to [i6]. The span equilibria increase considerably
with decreasing tension.

Compared withe? andP; , the speed has smaller influence on
the equilibrium deflections as seen in Fig. 5. Small equilibrium
changes with speed seem contradictory to physical intuition be 0
cause increasing the speed means decreasing the effective tens
This phenomenon can be explained by the mechanism of the te g
sioner, whose main purpose is automatic tension loss compensg
tion to keep variations of theractive tension of the belt R; —s? %
+T) small when the speed is changéd. >

The tensioner spring stiffneds, has small influence on the g
equilibrium deflections over a wide range of variatidfig. 6). &
Although for span 1 the equilibrium deflection appears to chang
significantly whenkg increases, these changes are predominantl 002,
from rotation of the whole spafwhich is caused by tensioner
rotation and the span boundary conditionw,(1)

€

5 -0.01

=(r/1;)cosB,6,). Subsequent results using the coupling indicatol 1,;000

confirm this. Figure 7 shows that the longitudinal belt stiffngss

has very small influence on the equilibrium deflections.
Linearization of the generalynamicequations about the equi- Fig. 3 Equilibrium deflections of spans 1 and 3 for varying belt

librium configuration shows that the degree of pulley-span vibréending stiffness: s=0, k;=4, y=400, P,=P,=P;=1

0 o
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'
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w

Fig. 4 Equilibrium deflections of spans 1 and 3 for varying
span tensions: €=0.05, s=0, k;=4, y=400 Fig. 5 Equilibrium deflections of spans 1 and 3 for varying
speed: £=0.05, ks=4, y=400, P,=P,=P3=1

(for this equation only Looking at the#; and #; terms coupling
the span and pulley vibrations, the equilibrium curvatwg,, —clearly curved except foe~0. In this caseT~7s’ is a poor
governs the magnitude of coupling. Returning to the notation @PProximation fore>0; 7 is no longer effective to describe the
w;(x) representing equilibrium deflections, one can define tidange of tension with respect to speed changes. Physically,
equilibrium parametefi:féwﬁxxdx as thecoupling indicator t_he reason behind this phenomenon is tha}t When tensioner eff_ec-
for each span and the sufti=32_,I,=3% ,[w?,.dx as the tlven_ess r|]s smﬁll, the system cannot malnctja!n constantI tractlveoI
coupling indicator for the whole system. Increaét"ﬁg'ndicates ension through tensioner rotation as speed increases. Increase
. : - . speed then decreases the tractive tension and, because of the non-
increasing coupling between the rotations of the pulleys and tral} 7o bending stiffness, enlarges the belt span deflectistrisg
verse motions of the belt . . model equilibria always haveerospan deflections and are unaf-
Flgures 8 and 9 show that belt bending stiffnessand span fected by decreased tensjoThe increased span deflections in
tensionsP; strongly affect coupling. Generally, largé and small iy cause additional tension due to the increased span lengths.
tensions resultin a more beam-like belt with relatlvel_y Iar_ge €dUrhys, when bending stifiness is consideredcannot correctly
librium span deflections and strong pulley-span vibration coyscripe the relationship between tension and speed for poorly
pling. In such cases, bending stiffness cannot be ignored. designed systems.
Belt speeds weakly affects coupling for properly designed sys- e piots ofl" versus tensioner spring stiffneksand longitu-
tems, but the effect of speed can rise if the tensioner is not profin | pelt stifnessy are not shown because coupling indicator is
erly designed. These results are shown in Figs. 10 and 11 whgre,cak function of these quantities. Wher-0.015,s=0, P,
7=0.78 corresponds to a well designed syst@s used for all _p_—p_—1 the value ofl" varies less than 3% over the ranges
other results in this papeand =0 is a poorly designed system. k. and y corresponding to that in Figs. 6 and 7.
n is the tensioner effectiveness, and it indicates the ability of the
tensioner to maintain constatnictive belt tension in response to ] .
changes in belt sped6]. Mathematically,y=dT/3(s?) ats=0, APproximate Closed-Form Solution
£=0 (an analytical approximation is derived subsequentlyis When the belt bending stiffness is small, which mearsl
close to unity for well designed systems, while smgindicates (this is the usual case for practical serpentine belt systeams
poor tensioner design. Figure 11 shows the variation of tensig@proximate solution can be obtained using singular perturbation.
for ranges ok ands? for the valuesy=0.78 andy=0 (the change This closed-form solution shows explicit dependence of the equi-
in 7is induced by adjusting the tensioner orientation an@leg. libria on system parameters. It also leads to a simple equation that
For the well-designed system=0.78, the surface remains nearlyreveals quantitative relations between the coupling indicator and
planar andT ~ 5s? over the entire region. Fay=0, the surface is the key design variables.
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Fig. 7 Equilibrium deflections of spans 1 and 3 for varying

longitudinal belt stiffness:

=1

P,=P,

4, P,=

0, ko=

0.05, s=

e=

Fig. 6 Equilibrium deflections of spans 1 and 3 for varying

tensioner spring stiffness:

=P,=P,

0, y=400, P,

0.05, s

£E=

1

(62)

is the leading composite combination of the inner and
olution of theéth span. Substitution of Eq$60)—(62) into

C

let us investigate the linearized equations of the equilig\;herew_

First
rium system(42)—

(44). When nonlinear terms are neglected

' Onguter S

Eq. (42) yields equations for the spans.

has the linear system

First consider span 1, which has the equation

O<x<1,

1,2,3,

Wi,xxxx_(Pi_Sz)Wi,xX: 0, i

il

|

82

(67)

—
I’

perturbation

-

. ~—exact

L

0.035 0.04 0045 005

€
I" for varying belt bending
=P,=P;=1

L

0015 002 0.025 003
=400, P,

=4

0, ks

0.005 0.01

15
19,

cospy

Wlxxx(l)

i
Iy
WZX(O)+82

[—(Pl—sz)wlx(lws

CO0Sf,

WZ,XXX(O)

zl

Py—s?)w,,

(

|

+(T—s?)sinB;— (T—s?)sin B,— Kb,

L
o

(58)

=0,

(59)

0.

Iy

L+l+ls T

—+
v |

sinB;) 6;

(sinBi—

Boundary conditions for thev; are still Egs.(27)

n

I ..-13«0%5 Burgdno;

(29). While
readily solvable, the linear system approximation is unsatisfactor

as seen in Figs. 12 and 13. Thus the equilibrium problem is nor

linear in essence
approximation.

o]

and the linear system does not give an effecti

1

Returning to the nonlinear model, the variables are represente

%
Fig. 8 System coupling indicator

stiffness: s

(60)
(61)

T=TO £ gTM ...
00 +eoV+- -

6;

as
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Fig. 9 System coupling indicator I for varying span tensions: 0.2
£=0.015, =0, k=4, y=400
0.15
B~
o
2 01
12 5
82( E) Wi,Xxxx_ ( Pl_ SZ+T(O)+ ST(l))Wixx: 0, O<x<l1. = 0.05]. -
(63)
The outer expansion has the form 08
WP=Yo(X) +ey1(X)+&2Yo(x) - . (64)
Substitution of Eq(64) into Eq. (63) gives b)
Yoxx=0, (65) i . - o . i i
5 o . Fig. 11 Tension variation with different tensioner orientation:
(P1—s?+TO)y1 0= =TV (66) ky=4, =400, P,=P,=P,=1. (a) B,=135.79 deg, B,
e =178.74 deg, »=0.78. (b) B,=68.53 deg, B,=111.47 deg,
n=0.
(P1— 52+T(0))y2,xx: ( E) Yoxxxx™ T(l)yl,xx- (67)
Solution of these problems in sequence yields
w?: Do+ D X+ &(Dy+D3gx)+&4(Dy+DgX), (68) whereDy~ Dj are arbitrary constants. This outer expansion is not

required to satisfy any boundary conditions. It must be matched
with two boundary layer expansions, one valid nea0 and the
other valid neax=1.
75 ' ' . . : : . To find the inner expansion near=0, one introduces the
stretching transformation

Y g=—, A>0. (69)
6.5 s - e

Denoting the inner expansion neer0 by the superscript, Eq.
(63) becomes
d?w} _

2 44
82*4*(:— dWl—(P1—52+T<°)+8T(1))s*“—
1
(70)

d¢* de?
As s—0, the distinguished limit correspondsXe=1. Then,w}, is
governed by

Coupling Indicator, I"
o &

45

I\ 2d*w! d2w!
35 ] ) ) ) 05 08 07 08 (T) ?llli(PlisZJrT(OuST(l)) d ~21 =0,
0 0.1 0.2 0.3 0.4 ] . X ) 1
s J 71)
. 2w Iy
Fig. 10 System coupling indicator I’ for varying speed: W'1(0)=0, l(0):32(—)_
£=0.015, k,=4, y=400, P,=P,=P;=1. 7=0.78 corresponds dé? r
to tensioner orientation B,=135.79 deg, B,=178.74 deg in ) . o ) 5
Table 1; while 5=0 corresponds to tensioner orientation With the inner expansionv; =Wy (&) +eW, (&) +&°W,(§), Eq.
p1=68.53 deg, B,=111.47 deg. (71) gives
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Fig. 12 Equilibrium deflections of the first and third spans:

£=0.01, 5=0.6, k;=4, y=400, P;=P,=P;=1

1\ 2 d*W, d?w,
e 2.

det dé?
Wy(0)=0 Wo,gg(o) =0,

2 44 2 2
(L) d’w —(P ,sz+T<0>)d Wl:me
| ) d§4 d§2 d§2
W1(0)=0 W, 4(0)=0,

2 44 2 2
(I,) d'w, —(P _32+T<0>)w:ﬂ1>d W
| d§4 ng d§2

Iy

The general solution of Eq72) is

Wo(é)=ag+boé+ coe’g('l”)\/Pl’sz+T(o)+ doetls

The constantly must be zero; otherwis&y,(£) would grow ex-
ponentially with &, making it unmatchable with the outer expan-

Journal of Applied Mechanics

)

(72)

(73)

(74)

M\Py—s?+T0)

(75)

Span 1 deflection

Span 3 deflection

Fig. 13 Equilibrium deflections of the first and third spans:
€=0.01, s=0.9, ks=4, y=400, P,=P,=0.9395, P;=1.5395

sion. The boundary conditions in E72) lead toWy(£)=bgé.
Subsequent solution of Eq&73) and (74) for W, and W, yields
the inner expansion

Wy(€)=boé+eb, ¢+ &2

o s
28 l1) \ri)p -2+ 7@

where exponential growth terms have been eliminated.
With use of Eq.(69) and\=1, the inner expansion of E¢68)
is

(W)'=Do+e(D1é+Dy)+e*(Daé+Dy). (77)
The outer expansion of E¢76) ase—0 is
DO=boé+ebyé+e?l b ')zll) !
(Wy)"=boé+ebié+e| by N ek
(78)

The matching principlew?)' = (w})© yields

DOZO, b0:0, b1:D11 D3:b2, DZZO,

SEPTEMBER 2003, Vol. 70 / 747



(79)

o — ( I )2(|1) 1 +ebM)x. (85)
o P,—s?+TO" Similar perturbation processes far, andw; yield

Iy) \ry

For the boundary layer near= 1, the stretching transformation o1 2 1 I, I, I,
is {=(1—x)/e. Denoting the inner expansion of E(G3) near Wo~W5=g o —eroln TR
x=1 by the superscript, the governing equation as—0 is 2/ Pp=s™HT 2 z 3
)2 d4w! d2w! _|_2e—(x/s)(lz/I)\/P2—52+T(0)
(—) L (P—HTO4 Ty —L=0.  (80) r
) dgt dg?
. I ]
Application of similar procedures as for; to w} yields + r—ze[(xfl)/s]('zl” Py=s*+TO
3
Wi =1t c08B1 60+ Bog + 6| Byl cosBy 6V | + 62 Byl "t O+ eot)
17 10¢ 0 1 I 10 2 —Ecos,Bz(BI +e6;”)(x—1), (86)
2 2
+ l_ (l_l);(1_e*§(|1/|)\/P1’SZ+T(0)) , w "'WC:SZ(l— ; _I_3+ |_3_ |_3)X
l) \r2/py—s24+T© s I3} P3—g2+TO| T3 \rz 1y
(81)

+ |_3e—(x/s)<|3/|>\/P3—52+T(°>
s

whereBg, By, andB, are arbitrary constants.
The inner expansion near=1 of the outer solutior{68) is |
3 _ b _<2 (0)
(WS)'=Do+D;+s[~Dyl+Dy+ D3] +e? — Dyl +Dy+Ds). + ae[(x Diel(a/DVPa=st+T
(82)

. (87)

. . Substitution of Eqs(60), (61), (85), and(86) into the tensioner
Oyl __ 1\O

The matching conditionvy) = (w;)"~ leads to arm Eq.(44) gives the following conditions corresponding to the

L £% ande? terms, respectively:

Do+ D, =; cosB6”, —D,;=By,

! (—s?+TO)(sinB;—sinB,)—

r
ks+ I—tcos’- B1(P;—s?+T)
rs 1
D,+Dz=—cosp; 6V,
2+ Da=1) B16; L o]0
(83) +|—co§,32(P2 2+ TO) 199 =0, (88)
2

1\2/1 1
7D3:Bz, BOZO, D4+D5: - P

T — 0 r
I/ \r2/py -2+ T T(sin By —sin ) —| ke 1 COS By(Py—s2+T()
1

Solution of Egs(83) and(79) gives

It
r r + = 0% By(P,—s?+T?) gV
D=0, Dl=ﬁcos/310{°), D,=0, D3=ﬁcos,810§l), I 2z '
r r
( | )2( |1) 1 —(ﬁcos’- ﬂ1+ico§,82)T<l)0{°)=O. (89)
D4:_ T - —,
i) \ri/py—s?+TO Substitution of Eqs(60), (61), and(85)—(87) into Eq. (41) yields
|12 1 Lo the e and e’ conditions
1 1
Dsz(—) —(—Jr—), 11415+l [l (r Z 2
li) Py—s?+TO N1y 12 -127s 3T<0)__[_1(_‘00551 +2 —tCOSBzH
y 2|7\ I\,
.
bo=0, by={"cosp.6, (84) L o)
1 X (6 )+|—(smﬁl—sm,82)0t =0, (90)
It Iy 2
b,=—cosB;6!Y, By=0, B;=——cosB;6”, 1lg+1,+I ly(r lpr
2l Pt 0 Yo Pab ;—1 |2 3T<1>—|—1 ﬁcosﬁl +|—2 icosﬂz

It
- (1) r
B, Ilcosﬁlﬁt : X 6.9 o)+ l—t(sinﬁl—sin,Bz) 6M=0. (91)

The composite expansion for span 1 is .
P P P Generally, T® and 0§°) must be solved numerically from the

Wy ~WS§=w+wh +wh— (w))°— (w})© nonlinear algebraic Eq$88) and(90). After solving for T(® and
|2 1 | | | 0%0), higher-order terms can be calculated successively, like the
:82(_) —[ _a, (_1 " _1) X T and ¢ are obtained by solution of Eq89) and(91) (which
i) P —?+TOL 11 Arp 12 give TW=¢P=0). These values complete the leading-order

| composite span solutions of Eq85), (86), and(87). Represen-
4+ Lo (el HyPy-s+TO tative agreement between analytical and numerical solutions are
M shown in Figs. 8—10, 12—-13, and listed in Table 2.
r Note if the bending stiffness vanishes, then the analytical re-
t (0) sults reduce to those for the string model. For example, according
+ |- cospy(6; or th .
Iy to Eq. (87), the deflection in span 3 is zero throughout the span

_ |_1 el(x=D/s](1y )Py —s*+TO

Iz
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Table 2 Comparison of approximate analytical and numerical coefficient 1 preceding it; the influence of speed would rise as
solutions. Case 1 parameters are those used in Fig. 12, and 7 gets smaller. The effects of tensioner spring stiffnkssand
Case 2 parameters are those used in Fig. 13. longitudinal belt stiffnessy are very small because their impact is
felt only through the tensioner effectiveness

Equations(93) and (96) reveal that the span-pulley vibration
Case 1 0.2828 0.2836 —0.0106 —0.0113 coupling is determined primarily by three factors: the system ge-
Case 2 0.6408 0.6417 —0.0247 —0.0255 ometry (especially the ratios of the pulley radii to the span
lengthg, the bending stiffness, and the span tensions. Large
necessary for strong vibration coupling between the spans and
) ~ pulleys; reduced” prevents pulley rotations from generating un-
whene is zero; also see Eq$85) and (86). When the bending desirable span vibration. By tuning the system design variables,
stiffness approaches zero, no matter how small it is, boundape degree of coupling” can be adjusted. The most effective
layers always exist at the ends of each span, although their thigkethods to reduce this coupling at#) decreasing the belt bend-

ExactT  ApproximateT  Exactd,  Approximate6,

ness and height are very small, as seen in Figs. 3 and 12.  jng stiffness,(2) increasing the span tensions, which are deter-
Substitution of Eqs(85)—(87) into the definitions of system mined by the initial tensioner torque and the accessory torques
and span coupling indicator gives exerted on the pulleys, an@®) increasing the ratio between the
1 e LT1\2 (.12 pulley radii and the span lengths. Higher bearing loads negatively
r:E FiNE - - _[(_') (_') } balance the benefits of higher span tensions. The increased bear-
= =12 \P—s2+TO I [\rg lei ing loads occur at all pulleys, even though the troublesome cou-

(92) pling is typically concentrated at a single span. Increasing a pulley
éadius can be an effective, low cost solution to reduce a practical

wherer; andr; are the radii of the two pulleys at the ends of ths an vibration problem where pulley rotations drive large span
ith span. Analytical and numerical solutions agree well as show P puliey g€ sp

in Figs. 8, 9, and 10. For general serpentine belt systems haviné
spans, generalization of E(P2) gives

Ibrations. This solution is localized to address only the problem
pan vibration.

- 1 i & I ( l; )2 ( l; )2 03 Summary and Conclusions
24 P —+T0 Ii[\rg lei ©3) A model of a serpentine belt system including belt bending

. . . stiffness is established and an equilibrium analysis is performed. A
Note that fror_n Eq(93), when the bend_lng stiffness is ze(mzo),_ numerically exact solution is presented to determine the span and
thenI'=0. This corresponds to the string model where there is Rnsjoner equilibria. This requires a novel transformation of the
equilibrium curvature. ) ) governing equations to a standard ODE form readily accepted by
~From Egs.(60) and (61), the Ieadmg-é)rder tension and ten-eneral-purpose BVP solver codes. A closed-form analytical solu-
sioner rotation approximationg{”’ and 6{”)) are independent of tjon is also developed for the case of small bending stiffness using
the belt bending stiffness?, which means that(® and 6{” are singular perturbation. A coupling indicat6F) is defined based on
determined by the string model of the serpentine belt drives. Fitve equilibria to quantify the undesirable vibration coupling be-
string models, former researchéf516] have indicated that tween pulleys and spans. The perturbation solution analytically
exposes the effects of the design variables on the equilibria and
coupling in terms of simple expressions. The major conclusions

0) 2 _ 2__
TO=~»s?, 7= d(s?) at s°=0, G4 include:
wherey is the tensioner effectiveness, as mentioned before. Equal. Belt bending stiffness and span tensions strongly influence
tions (88) and (90) lead to the equilibrium deflections and pulley-span coupling.
2. Speed has a much smaller effect on this coupling due to the
1 automatic tension compensation ability of the tensioner as-
= 1 1 (95) sembly when properly designed.
Pi| i cod B+ —cog B, | +K 3. The effects of tensioner spring stiffness and longitudinal belt
ERAPRAF hy 2 +1 stiffness on equilibrium are small over a wide range of varia-
Y (sinB;—sinB,)? tion.

4. The vibration coupling between the pulleys and spans is
determined mainly by the equilibrium span curvatures. A
definedcoupling indicatorcaptures the magnitude of cou-
pling for each span.

which corresponds to that defined in RES].

Further comparison with numerical solutions shows that the
above approximation is good for properly designed system, but
the approxmatl(coJ)n beCZC)mes poorjfis away from unity(Fig. 10. 5. System geometry, especially the pulley radius to span length
In such cases["”~ »s® is no longer the dominant part dfdue ratios, significantly affects equilibria and coupling. This sug-
to the poor speed compensation ability of the tensioner, as men-  gests that an effective, low cost solution to troubleshoot cou-

tioned previously; bending stiffness significantly impacts tension.  pjing problems is increasing the radii of pulleys that bound
For good approximation fo~0, more terms need to be incor- the problem span.

porated in Eqs(60) and (61) (with no change in Eq(62) for

approximation througl). This leads to additional equations like

Egs. (89 and (91). Approximation throughs* gives excellent Acknowledgments

agreement with Fig. Hwhere »=0. The authors thank Mark IV Automotive/Dayco Corporation and
Considering well-designed systems, substitution of E) the National Science Foundation for support of this research.

into Eq. (93) leads to
V2 [ 1;)\?
Rl
Isi lei

n Nomenclature
el o 1
2 2,

(96) EA

p \/f = longitudinal belt stiffness modulus
=1VPi= (1= m)s El = bending stiffness

The simple relation96) confirms the coupling indicator’s depen- J; = rotation inertia of pulleyi

dence on bending stiffness, tensions, and speed as shown by the M; = applied static torque on accessary

numerical solution. The effect of speed is small due to the small

o
|

= belt tension of spanin the reference state
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P, = static tension in the reference state without
accessory torques

c = steady state belt speed

k. = tensioner spring stiffness

I; = length of belt span

m = belt mass per unit length

r; = radius of pulleyi

u; = longitudinal displacement of span

w; = transverse displacement of span

6, = rotation of pulleyi

6, = rotation of the tensioner

6, = tensioner arm rotation in the reference state
{1, &2, B1, B2 = alignment angles of tensionésee Fig. 2

MO MY = end moments of spain
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The derivation and application of the Lagrange equations of motion to systems with mass
varying explicitly with position are discussed. Two perspectives can be followed: systems
with a material type of source, attached to particles continuously gaining or losing mass,
and systems for which the variation of mass is of a nonlinear control volume type, mass
trespassing a control surface. This is the case if, for some theoretical or practical reason,
a partition into subsystems is considered. An important class of problems in which the
extended Lagrange equations turn to be useful emerges from “hydromechanics,” when-
ever a finite number of generalized coordinates can be used, under the concept of the
added mass tensor. A particular and interesting one is addressed in the present paper: the
classical hydrodynamic impact of a rigid body against a liquid free surface.
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1 Introduction is addressed in the present paper: the classical hydrodynamic im-
act of a rigid body against the water free surface; see, e.g., Ko-

Variable-mass systems have been the focus of a large numbe . . g
problems in classical mechanics. As early as in 1857, Caylgy ”?] Igréi?]?g zﬁléhggﬁ?ﬁg,?fooker and Peregrirfd6], and Mo

discussed the problem of a chain being coiled up at a table. Levi-

Civita [2], in 1928, treated the motion of a variable mass poi Some Theoretical Considerations

body, in the two-body problem, introducing an extended form of ] ] o )
Newton’s law. Such a form, however, is only valid if mass is Kinetic energy,T=T(q;q;;t), is, by definition, at least a bi-
gained or lost at null velocity with respect to an inertial frame. An€ar form in generalized velocitie; , and also, in many cases,
renewed interest in this subject emerged with the “rocket profgfunction of the generalized coordinatgg, However, physically
lem,” now included in many textbooks. Another special class cfP€aking, there is a rather large distinction between the kinetic
problems, which has deserved consideration, relates to “tethefdiFr9Y being a_rexpllcn f“r_‘C“O” of the k'”??“a“c state Qf the
satellite systems.” Similar to the coiling chain problem such 3ystem(generallzed coordinates and velocijieer else, anim-

class concerns the deploying or the retrieving of a cable from p:'tf;lrjrrr‘]crtr']ofr?:(tgo,s';’,ttk)'ro\l;\?hhe?g?esrs't%lg ?:ﬁﬁzdsggs C;L?an‘:':’ n
. . 4 i o i=m;(a;;a;;1). , -
into a body moving along it, see, e.g., Crellin et[al4]. Spe_clflc chanical system does not obey the usual form of the classical
problems also related to cable systems, such as the |Iftlng-Cr8éﬁer_La range equations
problem, Cveticanirj5], have been studied recently. The textile grange eq
industry is another source of variable-mass systems problems in d /[T aT
mechanics, Cveticanir6—9]. All those applied research activities dtlag,) a_q-:Qi '
gave rise to the need of new theoretical investigations, as those ) ) ) ! )
conducted in the 1990s by Cveticanji0—17 and even earlier, Unless nonconservative generalized forces associated to fluxes of
in the 1980s, by G§13,14. mass are already considered includedin as those usually re-
The purpose of the present paper is to discuss some theoret egﬁed to as Metchersky's reactive forces, see, e.g., Cveticanin
. Otherwise, the derived equations of motion will take an er-

aspects involved in the variable-mass systems dynamics, usu ‘ I db d that th | Euler-L
hidden behind many derivations. Particular emphasis is given 'e0us form. It could be argued that the usual Euler-Lagrémge
ply Lagrangg equations would be suitable to the case for

the case of systems where the variation of mass is an expli%'iﬂ? . o :
which m=m(t), mass varying solely as an explicit function of

function of position. The discussion is extended to “hydrome-.me This is true. however. onlv if mass is aained or lost at zero
chanics,” here meant as a class of problems involving potentit:'jll . . ’ » only g oG
velocity with respect to an inertial frame of reference, in a “con-

flows around bodies, whenever a finite number of generaliz . N X
coordinates can be used as a proper representation of the mot‘\%ﬁjous impact manner,” as assumed by Agostiridig] (p. 257,

0 concluded being the Lagrange equations invariant for holo-
under the concept Of. Fhe added mass tensor. As "’.‘dded mass Watic variable-mass systems. In that particular work, Levi-
?”V depends on p05|_t|on of the body, explicitly, this may r(.end(:'é'vita's special form of momentum equatiaip/dt=f was used,

incorrect the a_ppllcatlon of the usual Eul_er-Lagrang_e equations g g reference to any reactive force, proportional to the veloc-
motion to any isolated subsystem. A particular and interesting ong of the particle that is being expelled from or incorporated to

- the system.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF et : ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- The reason for these subtle distinctions, concerning how mass

CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 27.changes, if as aexplicit or an imp”Ci_t function O_f tir_ne, will be
2001; final revision, February 20, 2003. Associate Editor: N. C. Perkins. DiscussislOwn next. The answer hides behind the derivation of the most
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depgjeneral form of the Lagrange equations, as presented, e.g., in

ment of Mechanical and Environmental Engineering University of California—San : ; ; ; ; i
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a%\r/etlcanm[lo]' We point out that, in systems with mass eXp“CItly

final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- ependent on position, a naive. applicat_ion Of. the usual Lagra}nge
ICS. equations, without any special consideration on generalized
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forces, leads to equations of motions which lack terms of the form3.1 The Simplest Case of Systems of Particles with Con-

(1/2)(9m/dq)g?. For instance, a nonproper application ofstant Mass. Usually, for systems of constant mass, the kinetic

Lagrange equation to the hydrodynamic impact problem leads dnergyT; = 1/2m;v? of a given particleP; is, apart from the mass

an erroneous term of the form (1/2)0M,/dZ)W?, beingM, the m;, identified in both terms of E¢(8), such that

instantaneous added magghe penetration of the impacting body )

into the initially quiescent free surface, adthe downward ver- dv; oP; d [1dmy g (1 L\ d[dT) 4T,

tical velocity of the bodly. Mgt 3_011'_ dt\ 2 a9, - g_qj > MV | = Gt (9_q] - (9_q]

We now proceed, deriving the “extended” Lagrange equations (10)

in Secs. 3 and 4. In Sec. 5, we present two didactic exam@)es: ) ) o

the reel problem(ii) the free-surface impact problem. Observing that, in this simplest casdm /dt=0, such that
dp; /dt=m;(dv; /dt), substituting Eqs(5) and (10) in the ex-
tended D’Alembert principlé€l), and observing that the general-

3 The Classical Lagrange Equations ized forcesQ; reduce, from Eq(9), to the usual form,
Consider a system dfl particles of massn;. Let P; be the op
corresponding position in a given inertial frame of reference and Q:E £ (11)
pi=m;v; the momentum. By extending Levi-Civita's form of s agp0
Newton’s law to cases when mass is gained or lost with no null
velocity, D’Alembert’s principle can be written one easily obtains the usual Lagrange equations
E(dp‘ )5 0 G T o =1, M (12)
——F; |- 6P;=0, 1 o o =Q 1=1,...M,
where for a system where all particles have invariant mass.
FI =fi + hi f (2)

3.2 Systems of Particles with Mass as Explicit Function of
Time m;=m;(t). Before entering the more general case, where
h; =m;v,; ()  mi=mi(q;;q;;t), itis also instructive to consider the case where

is a reactive force, proportional to the rate of variation of ma ’aAsls Ibs t§olely .a? ex;zilicit function of - timem;=m(t).

with respect to time and to the velocity,; of the expelled(or emberts principle reads

gained mass. Note that the reactive force known as Metchersky’s dm
(f+h)) SP,= EE( M+ g§r (f+h))

f; being the sum of all active forces acting &y, and

force, in the Russian technical literature, is usually written a
function of relative velocities, in the form

D;=m;(Voi— Vi) =h;—myy; . (4) 9P S0.=0 13
. . . , L " 7g. %4i=0. (13)
Under this latter interpretation, the extended D’Alembert’s Prin- g
ﬂ%ﬁ' Eq.(1), would be equivalently writtersee, e.g., Cveticanin o4 rating by parts, the first term transforms as follows:
dv; oP; d[1 ov¥| dm 1V 9 (1
d _ , m——=—-m——|-—|-——|— — —m.V,2
2 gy~ (fi+ @) |- 6P =0, @) Ydt ag; dtl2 o) dt 2aq,- ggi\2
Consider virtual displacement@P;, and aM set of generalized _ E 3 omv; dm J (1 ~m2
coordinatesq; (for simplicity, the system is considered holo- dtl2 4q; dt an am, 2
nomic) such that 1
2 ( 1 mivg)
5P, = 2 aq 5q; . (5) aq; \ 2
N L . d (T dm[ o (aT;\] 4T, »
The velocities; = v;(q;;@;;t); j=1, ... M are, as usual, consid- =t aa,) " dt |95, \am) | aq,° (14)

ered as functions of generalized coordinates and derivatives, as

well of time t. The following common and straightforwardly de-Qbserving Eq(7), the second term in Eq13) transforms as
rivable kinematic relations, which can be found in any good text-

book in classical mechanidsee, e.g., Targl9], p. 508, will be dm; P, dm av; 1dm avi dmy| 0 (T,
used as well AtV e, T At T2 dt oy, dt | ag, | am,
av; d [ dP; 5
aq; T dt aq; )’ ©) This latter expression is the most geng@hd concisgform for
U the parcel that depends on the variation of mass in the momentum
i i

i _ 9T @ time derivative. Note that this form is exactly the opposite of the
9q; dq;’ second term appearing on the right-hand side of (E4).
They cancel each other when E¢$4) and(15) are substituted
into Eq.(13), leading to a equation of motion which has the same

dv; oP; d (1 aviz g (1, form as Eq.(12), with the generalized forces given by E®).

dt aa. dt\29a4. ] _(_Vi (8) This is a very subtle step which can explain why a system of
particles with variable mass, but given solely as an explicit func-
We also define the generalized, nonconservative force, which #ibn of time, m;=m;(t), obey the same form of Euler-Lagrange

and

ready includes the reactive fortr,a-— M;Vei, as equations that govern a system of particles of invariant mass. This
is essentially Agostinelli'd15] result (p. 257, now having the
E F,- = 2 (f+ ©) generalized forces extended according to @y.by including the

q; reactive forces defined by E¢RB).
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4 The Lagrange Equations for Systems of Particles d L L

with Variable Mass as Function of Time, Generalized aT%’T%:Q?C? i=1... M,
Coordinates and Velocities,m;=m;(q;; q; ;t) 5
As before, use is made of the extended D’Alembert principle, in Q}m: 2 (I mvg)) - (9—'
i

the form (13) besides Eqgs(6)—(9). In this general case the first
term in Eq.(13) is given as

av 0P d (1 av? 1dmi((7vi2 a1
miﬁ'a_qj_& Em‘a_'qj 2 dt \og;) d9;\2 m"

1d/[om 1om,
+2i {Ea(T%(Vi)z>§a—%(V)] (21)

whereL=T-V is the Lagrangian function. As a matter of fact,
problems in classical mechanics where mass is an explicit func-

+ E Im Vv2) tion of velocities are hard to conceive, to say the |éagterefore,
2 Jq; Vi if just position dependence is considered, we obtain
d{1omv?) 1d[am)| , 1dm oV} dab b ...
=—\ls— 5| = |V{— 5= ————=0Q/%; j=1,... M,
dtl2 aq; 2 dt 4q; 2 dt \dq dt 9q; dq; )
J (1 1 gm; 1om;
A -3 IRl DAY fnet (V)2 (22
ﬂqj(zm.v.)uaqj vf) =2 ( V) 2o Z{Zﬂq )] (22)
d (aT) 1d ( ) , dm [ d (aTi” Equation(22) can be verified to agree_ with the derivation pro-
Tailga ] 2di\a Vi at |38\ am vided by Cveticanin[10], for .the practlgal case wher.e. mass is
% 9 aitom solely dependent on generalized coordindtes in velocities. It
dT; 1 omy must be observed that the first term appearing in Cveticanin’s Eq.

aq; ts En vi). (16)  (8) is exactly our term given by E15). In the present derivation,

! the Mertchersky’s reactive force has been split in the fabm
This is the most general form for the parcel that depends on tReNi(Voi— Vi) =h;—m;Vv;, such that the term given by E(]15)
acceleration in the momentum time derivative. Taking both mogds to be cancelled out, as observed before, turning the final Eq.
general forms, Eqs(15) and (16), and substituting in Eq(13), (22) somewhat simpler in form.
with the generalized forces given by E§), one finally obtain

5 Two Didactic and lllustrative Examples

d T T 1d/[dm; 5| 1 om 5l
dtaq. a_q:QJJFE 2 dt aq; -5 ()7~ Eﬁ_q-(vi) , 5.1 A Very Simple Example in Mechanical Engineering:
! ! ! The Deploying of a Heavy Cable from a Reel. Consider the
i=1,... M. (17) classical and very simple problem of a heavy cable being de-

ployed from a reel by the action of gravity, as presented in Fig. 1.
These are the dynamic equations for a system of particles withis very well-known problenhas been elected with the only
variable mass in the forrm;=m;(q;;q;;t). The last two terms purpose of exemplifying how partition into subsystems might lead
can be interpreted as addltlonal parcels of momentum time rate,an erroneous use of Euler-Lagrange equations. The reel has
caused by the changes in mass with position and velocities. AlteadiusR and moment of inertidg, around the axis of rotation.
natively, they could be interpreted as additiofrmnconservative
equivalent generalized forces” that take into account the Va”a_uch cases are, however, the core of relativistic problems, see, e.g[2BJars
tion of mass of each particle in the system. By properly definingdhap. xi, p. 190.
nonconservative generalized for(‘@; Eqg. (17) can finally be
written in the simplestand usuagl form,

d gT T . - M 1
dt g, (9_qj_ij i=1... M, R
R . aP; - | L
QJ—Ei (fi +mvg) - aq —— T —— ~
1d am; 5
o2 ral T a9
Moreover, if the active forcef are split into
=t (19) QRO
f¢ being conservative anfl’® nonconservative parcels, respec- g
tively, such that
Vv
> ff~5Pi:—2 g 20 (20)
[ i
V being the usual potential-energy function, Etg) can be writ-
ten in the convenient form, v i
Recall thatv; =v;(q; ;;;t); j=1,..., M. Fig. 1 Cable being deployed from a reel
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Let u be the mass per unit of length of the cable, supposed nc
extensible and infinitely flexible. Without loss of generality, fet
be the generalized coordinate, measured from horizontal such tt
at a given instant, the cable suspended length i6) =R0. Let
alsoL be the total length of the cable such that xL is the total jet root |
cable’s mass. For simplicity, we take the cable diameter to be ve

small compared to the reel's radius such that the winding pitch ..

also small and that all winding turns can be accommodated intoF

single winding layer. Let alsens(6) = uls(8) = wR8 andmg(6) éets or sprays are formed. édc indicates the instantaneous po-

=m—mg(0)=pu(L— 6R) be, respectively, the cable’s suspendegi;,,, of jet’s root, across which there is a flux of kinetic energy
and wound masses. and mass.

Obviously, for this simple problem, the best and shortest way to
apply Lagrange equation is to consider the wHaleariant masp
system. Kinetic energy is simply=1/2(1o+mR?) 2. Accord-
ingly, potential energy i8/=—1/Zmg(6)gR#]=—1/2ugR?6°>. quring the initial stage of impact, sprayer jets are formed,
A straightforward application of the usual Lagrange equatiolieving a very high field pressure that is formed around the body,
d/dt(dL/a0)—dLl/a6=0 to this invarian_t_ mass system leads tas shown in Fig. 2.
the correct equation of motior §+mR%) #— ugR?6=0. Nonetheless, as common in hydrodynamics, the analyst would

Suppose now that, for some practical reason, the analyst geebably split the whole body of fluid into two subsysteristhe
cides to take a subsystem composed by the reel and by the wobik of fluid, and(ii) the fluid inside the jets. If this procedure is
part of the cable, considering the suspended part of the cable &sllbwed, an exchanging flux of mass and energy clearly exists
second subsystem. Note that the suspended part of the cable lsstaveen these two subsystems, through their common frontiers, so
be considered as a material point gaining mass at ma§ed) that, even being the mass invariant for the whole material system,
=uR0O, with velocity v,=R@. Let the active force bef(6) it is not for the subsystems.
=my(6)g— 7(6), 7(6) being the traction at the upper section. Ap- Within the hydromechanical approach, the present impact prob-
plying the extended Levi-Civita form of Newton’s law to the sus?em can be consist_ently f_ormulated under the_Lagrangian for_mal-
pended part, we easily obtaid/dt)[ms(g)RE]=my(6)g—r(¢) ism. We take, for simplicity, a purely symmetric and vertical im-
+Mg( #)RO. Hence the tension force applied by the wound part @act case of a body being dropped against a free surface of a
the suspended part of the cable is simply) = uR6(g— R¥). liquid, with infinite depth. The aim is to determine the impacting

Now let I, =1 o+ mg(8)R2=1o+ uR¥(L—R#) be the moment fortc)e otn the E)hod)t/), ﬁ(lvefr;_ its initial Il(ll'neTr?tlcdSctiatde We tg\ke the
of inertia of the first (reelwound part of the cabjesubsystem, subsystenti) (the ulk o iquid, recalling the a ded mass depen-
such that the corresponding kinetic energy is given Dby dem? on the position of the b_ody_. Lt be the impacting body
— o 0o 2 o velocity, Z the body’s penetration into the water, measured from
=1/2(1g) 0°= 1121 o+ Mmr( )R] 6°= L | o+ uR*(L—RO) ] 6°. S . B B ,

- . . . the initially quiescent free surface ad;=M_(Z) the body’s

Note that mass exits the wound part with veloaity= R6 at a rate . . o .
. : S ~ added mass, in the vertical direction. Consistently, the true added
mg(0)=— nR4. If, erroneouslythe Lagrange equation is applied

) . X i mass is defined in the bulk of the fluid subsyst@mcluding the
to the first subsystem in the fornil2), with Q,=[(6) jets), at each instant of time, what is explicitly represented through

+Mmr(O)ROIR, such that @/dt)(dT1/90)—(9T1/96)=[7(6)  the superscriftfor “bulk.” This is accomplished by taking into

+mg(#)RO]R, the following and obviously incorrect equation ofaccount the so-called “wetted surface correction on added mass,”

motion is obtained: Io+mR?)#+(1/2)uR3¢*— ugR?6=0. caused by the marching of the jet root on the body’s surface. This

Note the presence of an erroneous quadratic term in velocitarching generates a geometric dependence of the kinetic energy

namely, (1/2.R362. on the generalized coordinaZe Note that the generalized coordi-
However, if the correct form of the Lagrange equation, givenateZ is an unknown function of the time At a given instant,

by Eg. (18), is applied to this variable mass sub-systerthe kinetic energyn the bulk of fluidis then written

with Q,=[7(6) +mg(A)RIIR— (1/2)(dme/d6)RZ62, i.e., such

free surface

%. 2 The impact of a rigid body against a liquid free surface.

that (d/dt)(&_‘l'llﬁe)—(aTllae)=[T(0)+mR(0)R€]R—(1/2__) TZEMEWZY
X (dmg/d@)R?62, the correct equation of motion, Iig+mR2) # 2
— ugR?0=0, previously derived when the whole system was B_ B

: . , Mz=Mz(Z),
considered, is readily recovered.

t
5.2 The Impact of a Rigid Body Against the Water Free Z= | Wdt (23)

Surface. It is usual practice to treat potential hydrodynamic o*

problems involving motion of solid bodies within the frame ofyowever, as already pointed out, considering just the bulk of fluid
system dynamics. This is done whenever a finite number of ggfplies that a volume of control has been defined by cutting the
eralized coordinates can be used as a proper representation foiggout. An actual variation of mass should therefore be taken into
motion of the whole fluid. We shall refer to this kind of appr_oacgéccount within the subsystem under consideration. The bulk of
as “hydromechanical.” This is made possible through the intrctyid loses mass and kinetic energy to the jets, through the jet roots
duction of the well-known concept of the added mass tensor; seg;.

e.g., Newmar{21] or Lamb [22], where a thorough analysis is The correct “Lagrangian formalism” approach is therefore to
presented on this subject. Particularly, art. 137 of Lamb’s opusdgply Eq.(18).% Note that the pressure force is applied along the
dedicated to the application of the Lagrangian formalism, envissierface formed by the bulk of fluid and the body; Fig.-2F,2

aging to address problems where the fluid kinetic energy, trafssing the force applied on the bulk of flufdhis equation reads
ferred from a moving body, depends on body’s position. This is,

for instance, the case of a body moving close to a solid barrier. In 5 d/aT JaT 1 dMaB
this particular example, fluid kinetic energy varies according to —F== dt | aw + 97 2 dz
the distance of the body from the barrier, and such a variation can
be represented through the added mass tensor. — . . ) )
. . ._“Buoyancy and gravitational effects are neglectable in the very starting of impact,
This would also be the case for the classical hydrodynamjgen inertia forces are, by far, the dominant ones.
impact problem of a rigid body against a free surface. In fact, “The opposite sign of the force applied on the body by the fluid.

W2—2mv; sine. (24)
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The fourth term corresponds to the reactive fondepeing the given to exemplify the use of such a general equation. Application
flux of mass through the jets ang the absolute velocity of the to engineering problems is somewhat rare, however. In fact, it is
fluid particles at the jet rooty is the instantaneous angle of therather difficult to conceive practical applications in which mass is
jets with respect to the horizontal. This equation transforms asan explicit function of positionand, even more rare, of veloci-

B ties).
_EB=_ E(ﬂ) T al %Wz_zva sina Apart from classical problems such as the “rocket problem,”
‘ dtiow) 9z 2 dz “tethered satellite systems,” “deployment of cables,” etc., good

examples can be extracted from potential flows around bodies.
This is true whenever a finite number of generalized coordinates
can be used as a proper representation for the position of the
whole system. In such cases, partition into subsystems, together
with proper definition of control volumes, is often mandatory.
Real losses of mass associated to fluxes of energy through perme-
able surfaces are then likely to occur, rendering conceptually in-
) ) ) correct the application of the usual Lagrange equations of motion.
recovering an expected result, in accordance with(Eg. A particular example where this kind of treatment turns out to
The way to calculate the instantaneous added mass, the flux,f,177iing is the classical problem concerning the hydrodynamic
mass, the velocity, at the jet root/C (as well as the veloCityr  jmpact of a rigid body against a liquid surface. During the initial
of the jet root itself, can be found, e.g., in Faltinsen and ZhaQage of impact, jets or sprays are formed along the intersection
[23], and Cointe and Armanf®4]. It is also crucial to mention a between the body and the free surface. Ignoring energy flux
neat conclusion drawn, in two independent papers, by Korobkjgyo,gh the jets has been the cause Gigparentcontroversy, by
and Pukhnacho(15] and by Molin et al{17]: half of the kinetic \\hich pressure integration and energy methods would lead to dif-
energy is transferred to the jets and half to the bulk of the fluidigrent expressions for the impacting force. According to Molin
As a matter of fact, the analysis by Molin et §17], after an ot 5 117], although flux of mass through the jets can be shown to
asymptotic analysis by Cointe and Armaj#4] on the particular e neglectable, the flux of kinetic energy is not. Half the kinetic
and important case of a circular cylinder of radRisproved that, energy coming from the impacting body is transferred to the bulk
&= WUR being a small parameter—or, in other words, within &f the fluid and half is transferred to the jets. We believe that this
short scale of time—the thickness of the jet root is of order simple derivation, from the point of view of Lagrange equations,
=0(e*7R/4) and the velocity at the jet root is of order; may contribute with the reasoning of the cited authors, even em-
=0(e "W). It then follows that mass flux through the jets is ofphasizing the need of a consistent definition of the added-mass
orderin=0(e?mpRLW?2) and sofnv;=0(empRLWA/2), L be- quantity.
ing the cylinder’s lengthl{/R>1). Hence, the vertical force ap-
plied by the jets on the bulk of fluid is of order pAcknowledgments
O(empRLW sina). Contrarily, the energy flux is of orde6
=0(mpRLWF) and @/dt)(MEW)=0(s ?mpRLW?). There-
fore the impact force on the body, for this case, could be writt

dM? 1 dm2

d B, 1 2 2 3 i
:fa(MaWH—W We—2mv; sina,

2 dz 2 dz
so that

d
|:Z'3:_a(|\/|§W)+2muJ sina, (25)
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Approximate Model for a
Viscoelastic Oscillator

An oscillator where the restoring force is furnished by a viscoelastic bar and therefore
depends on the history of the motion is considered. The history-dependent force is char-
acterized by a relaxation modulus and a relaxation time. Assuming that the relaxation
time is small, an approximate model for the oscillator is derived. This model is then
linearized for the study of small vibrations. It is shown that the viscoelastic force, in
addition to viscous damping, effects an apparent decrease in mass that modifies the
natural frequency of the linear oscillator. The temperature dependence of the relaxation
time, and consequently the frequency shift, is studiB®I: 10.1115/1.1607355

Y. Ketema

Department of Aerospace Engineering and
Mechanics,

University of Minnesota,

Minneapolis, MN 55455

1 Introduction viscous damping. Thus, for example, the oscillator possesses two

The application of viscoelastic materials in vibration dampinkesonance frequencies in the range of variation for the relaxation

nd n?rpl ; biect of increasing interest. Exampl fp ﬂ'bodulus. This property has since been used in the study of vibra-
and control IS a subject of Increasing INterest. Examples of SUfH, ahsorpers with adaptable frequencies of opergses|7,8)).
applications are found in vibration damping of flexible structureséo

has b | hell h he vi st one degree-of-freedom oscillator where both the elastic and
such as beams, plates, shells, etc., where the viscoelastic matgfigy, . jependent dissipative forces are nonlinear was considered

is made to vibrate with the structural member, for example, in thg [9]. As in the case of the linear oscillator with history-
form of a layer attached to a beam or a plégee, €.9.[1-3).  gependent restoring forces, the resulting dynamical system may

It is common to model the dynamics of viscoelastic materialge studied in a three-dimensional phase space. The problem of the
especially in linear problems, through the use of complex modufireservation of Hamiltonian orbits was addressed and the results
A more general model of viscoelastic materials is the materighere used in a new method of measurement of the relaxation time
with-memory model. In this model the stress at a point in thgnd relaxation modulus for the viscoelastic material.
material not only depends on the current state of deformation butjn the present paper, an oscillator that is subject to history-type
also on the history of the deformation. Such materials are termggktoring forces is considered under the assumption that the relax-
history type materialsor materials with memory{4]. Examples ation timey is small in comparison to a characteristic time of the
of history type materials include gum rubber, silicone gel, anghotion of the oscillator. Based on this assumption an approximate
high polymer solutions. model that gives the dissipative forces in an algebraic form, i.e., in

When the relative deformations of the recent past are mowerms of the displacement and velocity, is derived. In this model
important than those further back in time in determining ththe resulting dynamical system has a two-dimensional phase space
history-dependent force, the material is said to have “fadingnd is therefore simpler to analyze than the full history-dependent
memory.” A rigorous treatise on the properties of such materialaodel. The approximate model studied in this paper is equivalent
has been given by Colemda]. to what would be obtained in accordance [t0], though the

In the simplest case where the history-type model is used meethod of approximation is slightly different.
describe viscoelastic materials, the stress in the material is charThe rest of this paper is organized as follows: In Section 2 the
acterized by two material parameters: the relaxation tynghich  full history-dependent model is introduced. The approximate
determines the rate at which the influence of past states of strainedel, which allows for the study of the special case of small
on present stress diminishes with elapsed time, and the relaxatielaxation times, is studied in Section 3. Lastly, in Section 4, the
modulusG,, which determines the overall strength of the historglependence of the natural frequency of the oscillator on the relax-
dependence of the stress. More generally, history-type materiation time y, the temperature dependencepfand the resulting
may exhibit a spectrum of relaxation times that influence the btemperature dependence of the natural frequency is studied.
havior of the material simultaneously. In addition, the parameters ) )

y and G, themselves may be sensitive to outside effects such @s A One-Degree-of-Freedom Oscillator With Memory
change in temperature. This temperature dependence may lead {Qonsider a one-degree-of-freedom oscillator in which the re-
undesirable changes in mechanical behavior in the case of uncefaring force is furnished by a viscoelastic bar whose motion is
trolled temperature variations. However, it also affords the techestricted to be in the direction of motion of the oscillating mass
nologically important possibility of “tuning” the viscoelastic pa- (Fig. 1).

rameters to desired values through induced temperature changem describe the dynamics of the viscoelatic barxety(X,t)

in a specific viscoelastic element. denote the position at the present tinef a particle of the vis-

In a previous paper6], the properties of a linear oscillator coelastic bar which is at= y(X,0) in its undistorted natural state
subject to history-type restoring forces that have elastic and disai-time t=0. Then the history of the motion is represented by
pative parts was studied. It was shown that such forces give theX,t—s), Vs=0. If we now letF=4dy/dX denote the deforma-
linear oscillator force-amplification and resonance properties thadn gradient, the relative deformation gradient history is given by
are very different from those of a conventional oscillator with(X,t—s)/F(X,t), ¥s=0. The relative history is then character-

ized by
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 2
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- J(Xt—5)= [F(X,t—s)] ~1 Vs=0 1
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 20, t( it S) - [F(X ’[)]2 ’ s=0. ( )

2000; final revision, Apr. 24, 2003. Associate Editor: B. M. Moran. Discussion on the

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen . : [
Mechanical and Environmental Engineering University of California—Santa Barba:];lfle constitutive response function for determlnlng the present

Santa Barbara, CA 93106-5070, and will be accepted until four months after fir}é"}ilu.e of the axial forcéd(X,t) on .the.particI@( in the viscoelastic
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. bar is assumed to be of the finite-linear form
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x where wg is the natural frequency of small oscillations about the

viscoelastic material

equilibrium pointx* of (9), and is given by

[k
- - P 0= NmLy' (11)

with

(OO

| - dfe(x )>0

I 12)

Fig. 1 Schematic diagram of a linear oscillator with history-

dependent forces

Now, let &(t) such thal(t)=X* + £(t), and introduce

“Hol o= gila) =l
E&(n)=¢& @)’ 77(7')=w—077 @)’ {n=¢ wol’ (13)

f(X,t)=F(F(X,t))+ f G(s)J(X,t—s)ds, ) Then, (9) will take the form
0
_ dé(r)
wheref®(-) denotes the elastic response function &d) is the dr (1),
viscoelastic relaxation kernel for the material. dn(7)
Assuming that the motion of the viscoelastic bar is homoge- T
heous. We wiite 9 G =~ [(&(7)+ ®ol(7) +p cosor, (14)
x=x(X,t) =XXx(t). 3 de(n) (1 2p(7) 29(7)
Then, the deformation gradieR(X,t) = dx(X,t)/dX=X(t) is, in TR PR Tz U =
fact, the homogeneous “stretch” of material filaments so that
where
fe e~ ’)ZZ(I—S) _’)‘22(0 F} Tk
e _te o) — B (x*+§) Go P
FER(X ) =15(X(1)), J(X,t—9) %) .4 f(&)= — cbozrv p= i ywo  (15)
We shall assume th&(-) is given by the exponentially decaying gnq
relaxation function
Q
G(s)=Gee ¥7, Vs=0, (5) w=— (16)
0

whereG,>0 and the relaxation time>0. If we letL, denote the
referential length of the viscoelastic bar, then the dynamical eq

tion for the massn is

\g_e assume thatfs<1 and thatv is O(1) thus that the relaxation
ime is small. The other parametggsand ®, are assumed to be
O(1). In whatfollows, we derive a second-order approximation

my(Lo,t)=p(t)—f(Lg,t), (6) of (15), i.e., one that is accurate (), but that is in the simpler

which with (1), (3), and(4) can be rewritten as

A e~ GO
mLox(t)z—fe(x(t))+7f e

+ P cos(t,

where we have introduced the special forcing functipft)

=P cos(t.

It is convenient to rewrit€7) as a system of first-order ordinary

form of a single second-order differential equation. The main pur-

pose of this analysis is to describe the dynamics of the system

3 %2(t — ) —%2 in terms of the well-known behavior of the linear harmonic
S AU

= oscillator.
0 X“(t)

0 3 A Second-Order Approximation

As is customary in regular perturbation thedsge, e.g.[11]),
we begin by expandind(7) in an asymptotic series in powers

differential equations, and to do this we define the auxiliar?f &
function Un)=Lo(1) Teli()+e%()+0(&%). 7
- ° X2(t—s)=X%3(t) Substituting this expression into the third equation(d4) and
g(t):j e*S/deS (8) collecting terms of the same order éngives
0
. =0 18
Then, it readily follows that7) has the equivalent form ¢ £o(1) =0, (18)
fo 7(7)
X(t)=7(1), 1. — o, T
()=mn(t) et L(7) 2vx*+§(r), (29)
. — . Go~
mLo7(t) = —fE(X(1)) + — (1) + P cosit, ©) . 1 7(7){4(7)
) Y ) e 51(7)——552(7)—2W- (20)
f(t)z - E+ % (1) — 'y%_ Now, using(19) in (20) and solving for{,(7), we have
vy X X
- v . n(7)?
Clearly, an equilibrium point}*,7%*,¢*) for (9) (i.e., whenP §z(7)=m 77(T)+W . (21)
=0) is given by &*,0,0), wherex* is any root of the equation
Fa()“(*)zo_ We can therefore write
In order to bring the syster®) into a dimensionless form we 7(7) 2,2 7(7)?
first introducer through {1)=—2ev= +e% Nt
X*+&(7) X*+&(7) X*+&(7)
= wqt, (10) (22)
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Fig. 2 Damped natural frequency of a viscoelastic oscillator as a function of the relax-
ation time: (a) second-order approximation  (solid line ), (b) first-order approximation,
(dashed line ). ®,=1, x*=1.

This last expression may be substituted into the second equatwmere
of (14), and results in
2.2
7(7) 2e“v°d

B(ET)E) =~ 1 (E(7) 20 1o T HED =1 gy @9

()2 3.1 The Linear Viscoelastic Oscillator. Assuming small
+28212d 77 +pcoswt (23) Vibrations about the equilibrium positiof=0 one can linearize
2 (23) to obtain the equation

0 | . 1 L I I I
-20 -15 -10 -5 0 5 10 15 20

Fig. 3 The variation of the normalized relaxation time with temperature
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Fig. 4 The variation of the normalized damped natural frequency with temperature

. ®, Consider, for example, polymers for which the William-Landal-
poé(m)=—§&(1)—2ev 7= 7)+p coswt, (25) Ferry formula(see, e.g.[12,13) gives

—C(T-Ty

where
(1= CotT—Ts '

Y(T)=ye"", (28)

o
,LL0=1—282V2~—*0. (26) . .
X where the material constarts andc, are positive and depend on
Note that(25) has the form of the equation of motion for anth€ reference temperatuiie, and wherey, is the value ofy at
T=T,. For rubbers,; andc, take on the values of approximately

oscillator where the(scaled mass isug, i.e., a mass that is g .
smaller than the physical mass of the oscillator. In the case wher&-86 and 101.6, respectively, the reference temperdulging

Do is | the “subtract " i its effect the roughly in the range 200 K-300 K. Based on these valuéth
dyon,I;miirsgfnayebes?)? é%cnﬁi;p]iz_s Ite4) and its effect on the Ts=250K). Figure 3 shows the variation of the normalized relax-

Consider, for example, the damped natural frequency for tREON timey/ o with temperature. It is evident from the figure that
linear oscillator,wy . This is given by relatlvely_small changt_es in temperature can result in significant
changes in the normalized relaxation time.
1 1 [evd,y)\2 To estimate the corresponding change in damped natural fre-
wg=\|/—— ( ) (27) quency, we begin by noting that for any given temperature differ-
enceT—Ts, the ratio of the scaled relaxation time to its corre-
and therefore depends any. Figure 2 showso, as a function of SPonding value at the reference temperaflyei.e., the fraction
ywo=ev (solid ling). At yw,~0.4 the natural frequency has a?/ 7o, can be calculated usir@8) simply by replacingy and yo
maximum. This is where the tendency of the natural frequency Y & and evo, respectively. Then, by making use (7) the
increase due to the decrease of the effective mass balanced damped natural frequency can be calculated for Byl . Fig-
by its tendency to decrease due to the increasing damping. ¢ 4 showswy as a function off — T with the assumption that
comparison, the damped natural frequency of a damped lingat=&vo=0.5 atT=Ts=250K.
oscillator (with no second-order effect of the subtracted mass
shown in the same figur@dashed ling For both cases it is as-

ro ud\ X
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Flow Control Using Rotating
Cylinders: Effect of Gap

S. Mittal
Department of Aerospace Engineering, The flow past a bluff body can be controlled significantly by placing small rotating
Indian Institute of Technology, cylinders at appropriate locations. Computational results for control of=R&" flow past
Kanpur, UP 208 016, a circular cylinder are presented. Two control cylinders of one-twentieth the diameter of
India the main cylinder rotate at a rate such that their tip speed is five times the free-stream
e-mail: smittal@iitk.ac.in speed of the flow. Computations are carried out for various values of the gap between the
main and control cylinders. A stabilized finite element method is utilized to solve the
incompressible Navier-Stokes equations in the primitive variables formulation. A gap
value of one-tenth the diameter of the main cylinder is found to be close to the optimal
value. Compared to the flow past an isolated cylinder a very significant reduction in the
drag and unsteady forces is observed for the flow with conf@DI: 10.1115/1.1601250
1 Introduction Some finite element simulations for flow control using rotating

Various flow control techniques that result in reduction of dra%IInders have been presented by Miffé]. Computations were

and unsteady forces have been suggested and tested in the ggrted for two values of the gap-0.01D and 0.07B) and_ for

For example, the review article by Gad-el-Hak and Bushfigll €100 and 10. It was observed that./U=5 results in a
discusses some of them. One such method employed for sep&fgady flow for Re-100. At Re=10", even though the flow re-
tion control is the moving-surface boundary layer contrdinains unsteady, the wake is highly organized and narrower com-
(MSBC). Rotating cylinder elements are employed to inject mdrared .to t.he one without control.l I.n all the cases, a significant
mentum into the already existing boundary layer. reduptlon in the pverall drag coefﬁment and the unsteady aerody-

Modi and his co-workers have applied MSBC to reduce dradgmic forces acting on the body is observed. The effect of the gap
and unsteady forces on bluff bodies, for example, M@l Modi  is found to be more critical for the Rel0* flows compared to that
et al. [3,4], and Munshi et al[5,6]. The bluff bodies that they at lower Reynolds numbers. It is found that the coefficient of
have studied include flat plates at various angles of attack, rect@ewer required for rotating the control cylinders is significant for
gular prisms,D sections, and tractor-trailer truck configurationslow Reynolds numbers but small for relatively higher Reynolds
In all the cases, for high rotation rates of the control cylindensumber (16) flows.

(U./U=4, whereU. is the tip speed of the control cylinder and Flow past a translating and rotating cylinder is one of the most
U is the free-stream speed of the floresult in a narrowing of the vital components of the flow control technique being studied in
wake, delay of separation, and a significant reduction in the drabge present work. A detailed investigation of the flow past an
The method has also been demonstrated to reduce flow indugsmlated spinning cylinder and a review of the work by other re-
vibrations. Another effort by Choi and Ch¢¥] utilizes a belt searchers was presented by Mift@]. Their results show that for,
mounted on a cylinder that moves due to the shear stress actingapidly spinning cylinders, the end conditions and the aspect ratio
the wall. Computations carried out at R&00 indicate that up to of the cylinder have a significant effect on the flow. The end-
11% reduction in drag is obtained for a belt installed betweetondition corresponding to a no-slip wall results in loss of lift and
112.5 deg and 135 deg from the stagnation point. Another comcrease in drag owing to certain centrifugal instabilities. The re-
putational study by Park et 8] utilized a pair of blowing and sults from two-dimensional computations approach those in three
suction slots located at 110 deg from the leading edge stagnadimensions when the aspect ratio of the cylinder is large. This
tion point. Complete suppression is achieved for the=B&flow. observation is in line with that of Tokumaru and DimotaKig)].

The degree of flow control depends on various parameterswas shown in an earlier study11]) that the two-dimensional
Some of them include the number of control cylinders, their di2D) flow is stable to 2D disturbances for large rotation rates. This
ameter relative to the characteristic dimension of the bluff body ofas established by computing flows past an eccentrically spinning
interest, their speed of rotation and the gap between the bluff bogllinder.
and the control cylindés). The rotating control cylinders generate  The present work is a sequel to that reported in our earlier work
circulation and inject momentum from the outer flow into the[9]). Flow control past a circular cylinder using rotating control
wake of the main cylinder. It is expected that, if the gap betweesylinders, of much smaller diameter, is studied numerically. The
the main and control cylinders is too large, even though the coftation rate is fixed at). /U =5 and the Reynolds number of the
trol cylinders rotating at high speeds may generate enough cirgi is 10*. The effect of the gap between the main and control
lation, the effect on the main cylinders will be small. On the oth&yjinders is investigated. The computations are restricted to two
hand, if the gap is too small, the control cylinders will not be ablgimensions. These results are expected to simulate the situations
to generate significant circulation to achieve good flow contrQlyhere the aspect ratios of the main and control cylinders are large.
Therefore the gap is an important parameter in obtaining the qfetajled results, including time histories of the aerodynamic co-
timal performance of the flow control system. efficients for forces acting on the bodies and power required, are

N _ o presented.
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Department of Mechanical and Environmental Engineering University of Californias : ; ; _
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Q upper and lower boundaries are placed at 8 diameters, each, from

@ =D the center of the main cylinder. The no-slip condition is specified

J—g / for the velocity on the surface of the cylinders and free-stream
—,f— values are assigned for the velocity at the upstream boundary. At

U 2

- the downstream boundary, a Neumann-type boundary condition
for the velocity is specified that corresponds to zero viscous stress

vector. On the upper and lower boundaries, the component of

\Oj‘\] velocity normal to and the component of stress vector along these
o boundaries is prescribed zero value.
¢=D, All the values for the lift and drag coefficients and the Strouhal

number, reported in this article, have been nondimensionalized
with respect to the diameter of the main cylindér, and the
free-stream speed). The quantities with suffix “1” refer to the
main cylinder while the ones with “2” and “3” correspond to the

. i . . upper and lower control cylinders, respectively.

found in the articles by Mittal and Tezduygt2], Mittal and Ku- "The computations presented in this article have been carried out
mar [13], and Mittal et al.[14]. The method has also been emy,iqoyt the use of a turbulence model even though the Re is large
ployed by Mittal and RaghuvansHi5] to investigate the effect of nough for the wake to show significant turbulence. RARSY-

placing a small stationary cylinder close to the main cylinder. olds averaged Navier-Sto uations is not a good option for
was found that for certain locations of the control cylinder and fqf presentgproblem as thgef?gws we are dealigg withpare inher-
small Reynolds numbers the vortex shedding is (:ompletg@{_I

tly unsteady and the turbulence model may interfere with the
suppressed.

The outline of the rest of the article is as follows. We begin bghyS'CS of the flow. Another option is to carry out large eddy

giving the problem description along with a schematic of the flo |mullat|0nS(LES) by ﬁm{)loglr?g a SUb%”? thﬁle rgodel, I]or ex-
control device in Sec. 2. The SUPGtreamline-upwind/Petrov- mp'e, a smagorinsky turbulénce model. as been shown, re-
Galerkin and PSPQpressure-stabilizing/Petrov-Galerkistabi- cently, by .Ak'n et al.[17_], via test problems, that in most of the
lization techniques are employed to stabilize our computatio i.w d_oma_ln the numt_arlcal viscosity gengrated by thg SU.PG sta-
against spurious numerical oscillations and to enable us to zation, in terms of its maximum value in the flow dl_rectlon, IS
equal-order-interpolation velocity-pressure elements. Details ch larger than the eddy viscosity due to a Smagorinsky turbu-

these techniques can be found in the article by Tezduyar etrllar.‘?e model. Similar obse_rvatior]s have been made by Mittal and
[16]. In Sec. 3 computational results for flows involving the maifY'0in [18] for large eddy simulatiodLES) past a cylinder at Re

and control cylinders are presented and discussed. Finally, a fey900 Using a higher order upwind-biased finite difference
concluding remarks are made in Sec. 4. schemes. The mean velocity profiles from computations with and

without the subgrid scale model did not shown any significant
L difference. However, the one-dimensional spectrum of velocity at
2 Problem Description a downstream location reveals that the numerical viscosity re-
Figure 1 shows the schematic of the typical arrangement of thgoves substantial energy from the high wave number regime.
setup in the present work. Two control cylinders of diamé&egr . )
each, are placed close to the main cylinder of diambtefhe 3.1 The Finite Element Mesh. The flows that are being
control cylinders are placed close to the shoulder of the ma@#@mputed here involve interaction of wakes of the main and con-
cylinder. The line joining the centers of the three cylinders g0l cylinders. The disparity between the geometric scales of the
normal to the free-stream flow. The upper cylinder rotates in ti¥/linders is expected to result in vortical structures of widely
clockwise and the lower one in the anticlockwise direction. Théarying length scales. The value of Re based on the diameter of
rotation rates of both the cylinders & The nondimensional ro- the control cylinders and free-stream speed is 500. The flow for no
tational rate is defined as=U./U whereU. (=D Q/2) is the rotation of the control cylinders is associated with vortex shedding
tip speed of the rotating cylinders atHis the free-stream speed.from the main as well as control cylinders. Details of the flow for
All the results presented in this article are withiD,=20 and two values of gap can be seen in Mitfdl. At high rotation rates
a=5. The Reynolds number based on the diameter of the maihthe control cylinders, a thin region of high speed fluid is ex-
cylinder (D), free-stream velocity and the kinematic viscosity opected to surround each one of them. The boundary/shear layers
the fluid is 10. The gap between the main and control cylinders #r such flows are extremely thin. The finite element mesh utilized
g, i.e., the distance between the centers of the main and contfbthe present study is fine enough to resolve all the details of the
cylinders isg+D/2+ D /2. The objective of the present study isflow. A structured finite-element mesh is used close to the three
to investigate the effect of gap on the control effectiveness.  cylinders. An unstructured mesh is generated using the Delaunay
Power is needed to sustain both the translational and rotatiotethnique in the rest of the domain via an automatic mesh genera-
motion of the main and control cylinder<Cg= c§°‘+ C;faﬂs)_ tor. Mesh convergence studies have been carried out for these flow
The power coefficient for translatory motio@,,"2", is simply problems to assess the adequacy of the resolutiog$d0.01D,

the sum of the drag coefficients for the main and control cylinder@=0-073, and 0.1®. With approximately twice the number of
i.e., CIa"S=Cp,+ Cp,+ Cps. The subscript 1 is for the main grid points and one-half the time step, the two solutions do not
cylinder while 2 and 3 are for the two control cylinders. Thé::ow a})ny_apﬁremablle_ d(ljfferefn%e except f(;)r a S“gdht increiass i
power coefficient due to the rotary motion of the two contrgf?@n 2% in the amplitude of the unsteady aerodynamic coeffi-

cylinders isCR%'=(Cy;+ Cy,) (D/Dg) (U /U). Here,Cy, is the

cients with the refined mesh.
moment coefficient acting on the center of the cylinder. All the .

For example, for thg=0.07D case, the computations begin
results presented in this article are with respect to nondimensioﬁvi;“h a mesh con_5|st|ng of 22,221 nodes and 43,558 triangular
. i ; . elements and a time step of 0.02. In the structured part of the
time =Ut/D, wheret is the actual time. . . . .

mesh around the main cylinder there are 600 elements in the cir-
3 N ical Simulati cumferential and 8 in the radial direction. The radial thickness of
umerical simulations the band of structured elements is 0.D25The band of elements
The cylinders reside in a rectangular domain whose upstrearound the control cylinders has a thickness of 0.@28 has
and downstream boundaries are located at 8 and 30 cylinder H20 elements in the circumferential and 4 in the radial direction.
ameters, respectively, from the center of the main cylinder. THéne radial thickness of the elements close to the cylinders is 5

Fig. 1 Description of the relative location of the main and con-
trol cylinders

Journal of Applied Mechanics SEPTEMBER 2003, Vol. 70 / 763



g=0.075 D

g=0.100 D

\%%(

—

g=0.125D
=
) @ ( C
. g@\/““ o
A /
Fig. 2 Re=10* flow past main and control cylinders: stream function (left), pressure (middle ), and magnitude of velocity

(right ) fields at a time instant corresponding to the peak value of the lift coefficient for the main cylinder

X 10" “D. To check the effect of the time step and spatial resold-his mesh has 200 elements in the circumferential and 8 in the
tion, the solution is projected on a finer mesh with 27,029 nodeadial direction in the annulus consisting of the structured part of
and 53,014 elements and computations are continued with a tlee mesh around the control cylinders. The first element thickness,
duced time step of 0.01. The mesh with larger number of nodesiisthis case, is %10 °D. The solutions computed on the two
similar to the other one except for more refinement close to timeeshes do not show any appreciable difference except for a slight
control cylinders and the gap. In the regions close to the contiocrease(less than 2%in the amplitude of the unsteady aerody-
cylinder it is, approximately, twice as refined as the earlier onaamic coefficients with the refined mesh.
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The g=0.1MD case was initially computed with a mesh with 1.0 prerrprrrrrre e 1.0 prrrrrrrrrrrer T
28,323 nodes and 55,602 elements. The time step used was 0.00 o f sngle | ] ggf g-o0r0D | ;
This mesh has 600 elements in the the circumferential and 8 in the F ; ‘ ]
radial direction. The radial thickness of the elements close to the °8F E o8 F i 3
cylinders is X 10" “D. The solution is projected on a finer mesh Qorf : 1 2ot} i 3
with 38,093 nodes and 75,142 elements and computations contin i i ]
ued. Less than 1% difference was observed in the solutions from %€ i 1 °¢F i 3
the two meshes. osE i 1  oskE 3

The solution for the single cylinddno control cylinderswas £
computed using a mesh with 47,011 nodes and 93,574 elements 04 ool 0
The structured part of the meghn annulus of radial thickness 0 u 10 u
0.09) consists of 400 elements in the the circumferential and 40 " f """ T ' UL A L
in the radial direction. The radial thickness of the elements close os | #0%° 1 oo 900730 E
to the cylinder is X 10 *D. sk i E I 1 i 3

3.2 Flow Field for Various Values of Gap. Figure 2 shows ¢ 47E | 4 Qo7t i 3
the streamlines, pressure and velocity magnitude for various val-~ i > _ ! ]
ues of gap between the main and control cylinders. The pictures °¢f el 3 - E
are taken at a time instant that corresponds to the peak value ¢ 45 E H E os k ’ 3
the lift coefficient for the main cylinder. The solution for a single ]
cylinder is also shown in the same figure. The flow past @ single 4 o 0 e
cylinder separates quite early resulting in a wake with large lateral 10 v 10 v
width. This is expected for a subcritical flow. From Fig. 2, it is TEO T R U A
observed that the instantaneous flow shows an upward bias of th os f 9=%'%P i osp TP 3
flow. This has been observed by other researchers in the past, ¢ 3 ‘ 3 os b i ;
well. Behr[19] reports that for Re2000 and larger, the vortex : : ) i 3
street oscillates about the centerline of the domain. The effect ofg. o7 F i i So7f ; -
this oscillation is also observed in the time histories of the liftand . 3 E o6 b ]
drag coefficient. The basic vortex shedding frequency is modu- F ; i 3
lated with a lower secondary frequency that is, approximately, ten 05 | ' E os :
times the vortex shedding frequency. Our computations indicate ;, Ealy . ieeeioiin oy 0.4 Bt
that the time-averaged flow for several vortex shedding cycles € 4 2 0 2 4 &8 € 4 2 0 2 4 6

results in an almost symmetric flow. The time-averaged drag co-

efficient is 1.8, approximately. This is on the higher side comparggh 3 Re=10* flow past main and control cylinders: variation

to the measurements from experiments. Computations were a$éhe x component of velocity in the gap region and close to

carried out for Re=3900 flow. The time-averaged drag coefficienthe upper control cylinder at a time instant corresponding to

obtained for this flow is 1.79. This compares well with the resultse peak value of the lift coefficient for the main cylinder

from Beaudean and Moif20] who reported a value of 1.74 from

their two-dimensional computations. Three-dimensional computa-

tions result in more realistic results. However, they require signifstagnation streamline for the main cylinder to go over the control
cantly larger computational resources. In the presence of conteglinders. The fluid that negotiates the control cylinders is given
cylinders, the demand on computational resources is even highar.increased momentum and is pumped into the wake of the main
Therefore the present computations are restricted to tweglinder. The flow pictures suggest thgt0.10M@ results in a
dimensions. wake with the lowest unsteadiness.

With the rotating control cylinders in place, the wake is much The velocity profiles for the isolated cylinder and for various
narrower and organized. In all the cases the control cylinders ayaps are shown in Fig. 3. The profiles on the upper surface of the
associated with a set of closed streamlines near their surface. Eoatrol cylinder are quite similar in all the cases. The flow accel-
rotation of the control cylinders causes the streamlines close to #rates over the upper surface and achiav$~6 close to the

-3
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0
theta (deg.)

single ------- g 0D —— potential -------

g=0.010 D ------

Fig. 4 Re=10* flow past main and control cylinders: variation of pressure coefficient on the sur-
face of main cylinder at a time instant corresponding to the peak value of the lift coefficient
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Fig. 5 Re=10* flow past main and control cylinders: the vorticity field and its close-up at a time instant
corresponding to the peak value of the lift coefficient for the main cylinder. Clockwise vorticity is in broken lines
while the counter clockwise vorticity is shown in solid lines.

control cylinder. The flow in the gap is quite interesting. Exceptream flow. Forg=0.129, except for a region close to the
when the gap is largeg=0.123) the entire fluid in the gap control cylinders, the flow in the gap has a velocity in the free-
region is dragged by the rotating control cylinder. All the fluidstream direction.

particles have a velocity in the direction opposite that of the free- Shown in Fig. 4 is the variation of the pressure coefficient on
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Fig. 6 Re=10* flow past main and control cylinders: time histories of the lift and drag
coefficients for the main cylinder

the surface of main cylinder for various gaps. The variations f@ressure is observed fgr=0.10@. Beyond this value of gap, the
the isolated cylinder and that for the potential flow solution arease pressure starts decreasing again.grh8.10M® solution is
also shown. The departure of tkg, plot from symmetry around also the most symmetric one among all the cases. This suggests
=0 deg is associated with a nonzero lift coefficient acting on thteat the g=0.100 case results in very low lift and drag
cylinder. The plots correspond to the time instant when the lifioefficients.
coefficient of the main cylinder achieves its peak value. Therefore, The local peaks in th€, plots for the main cylinder, shown in
at this time instant, th€, distribution is expected to exhibit the Fig. 4, can also be explained as follows. The rotation of the con-
maximum asymmetry about=0 deg. trol cylinders cause the surrounding fluid to be dragged along with
In general, a lower base pressure results in a larger drag caéem. If the gap between the main and rotating control cylinders is
ficient. The instantaneouS, distribution for a single cylinder is too small, not all the fluid can pass through the gap. A part of this
quite unsymmetric abou#=0 deg. The base suction coefficienthigh speed moving fluid impinges on the main cylinder, slightly
(—C,) for the viscous case has a less negative value compareditwvnstream of the gap, leading to a very high pressure and in
that for the potential flow solution. Therefore it is associated witbertain cases, close to the stagnation value. This can also be ob-
large mean drag and amplitude of lift coefficients. The served very clearly in the plots for pressure field shown in Fig. 2.
=0.01M case restores the symmetry of t@g plot to a signifi- The high pressure on the main cylinder due to this effect reduces
cant extent and also increases the base pressure. Since the coasrthe gap increases and the affected region moves further down-
cylinders are fairly close to the main cylinders, the variation in the&tream. Beyond a certain value gfnot all the fluid in the gap
pressure distribution on their surfaces caused by the rotation is fedlgion moves in the direction of the control cylinders. Slightly
by the main cylinder as well. This appears as sharp peaks aay from the control cylinders, the flow in the gap, has a veloc-
valleys near the shoulder of the main cylinder. As the gap is iiity in the free-stream direction. This results in a qualitative change
creased the peaks in tiig, variations due to the control cylindersin the nature of flow. The wake of the control cylinder that im-
reduce. In addition, the solution shows increasing symmetry abqihges on the main cylinder, perhaps, becomes unstable leading to
#=0 deg and a larger base pressure coefficient. Maximum basgsteadiness.
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Fig. 7 Re=10* flow past main and control cylinders: time histories of the lift and
drag coefficients for the upper control cylinder

The vorticity fields for the various cases are shown in Fig. 5. Asontrol cylinders. This is in line with the observation that the
was observed earlier, the flows with rotating control cylinders agesence of main cylinder has a detrimental effect on the circula-
more organized compared to that past an isolated cylinder. Tthen generated by the rotating control cylinders.
solution forg=0.10M exhibits the lowest level of unsteadiness. An interesting observation from Fig. 7 is the generation of
Among the cases studied, it appears to be the most optimal ghpust by the control cylinders. A possible explanation is as fol-
value. For the small gap casg=0.01M®) the upper control cyl- lows. The oncoming flow, according to an observer placed on the
inder generates counterclockwise vorticity around itself. Theontrol cylinder, is at a slight angle to the free-stream flow due to
boundary layer from the main cylinder is lifted off the surface anthe presence of the main cylinder. Therefore the local lift vector is
is dragged by the control cylinder around it. High speed flow islightly tilted with respect to the free-stream direction and the
injected into the wake of the main cylinder by the control cylineffective drag coefficienfwhich is along the free-stream direc-
ders. The efficiency of the control cylinders increases with irion) gets a contribution from this tilted lift vector. For larger
crease in gap. They drag lesser low momentum fluid from thietation rates, when the lift on the control cylinder is large, the
main cylinder and deliver the high momentum fluid to the maidrag component due to the tilt of the lift vector can become large
cylinder closer to the shoulder region. However, beyond a certalmereby resulting in a negative drag coefficient. Of course, power
gap, the effectiveness of the control cylinders is reduced. As censtill needed to rotate the control cylinders to overcome the
be observed from the streamline plots in Fig. 2, in all the casesrodynamic moment.
except forg=0.12D, the gap region is occupied by fluid that The variation of the Strouhal number, power requirements and
goes around the control cylinder. This is suggested by the closads value of the time variation of force coefficients are summa-
streamlines around the control cylinders. Fpr0.129, fluid rized in Figs. 8 and 9. The Strouhal number is based on the time
from the flow past the main cylinder is able to pass through the
gap. This observation is also supported by the velocity profiles
shown in Fig. 3. This flow has a significant impact on the near
wake of the rotating control cylinder that impinges on the main 1.00
cylinder. In fact, the flow pictures seem to suggest that the wake
of the control cylinders is unstable for this value of the gap. This

view point is strengthened by the time histories of the force coef- 0.80
ficients on the cylinders as shown in Figs. 6 and 7. As a result, the
control cylinder is not as effective as fge=0.10MD. # 060
. . . a
3.3 Aerodynamic Coefficients for Various Values of Gap. o
Figures 6 and 7 show the time histories of the lift and drag coef- (_JJ 0.40

ficients for the main and control cylinders for the various values
of gap. Compared to flow past an isolated cylinder, flows with
rotating control cylinders result in a significant reduction in both 0.20
mean drag and amplitude of unsteady force coefficients. The case

with g=0.10M results in the least value of mean drag and am-

plitude of lift coefficient. Except fog=0.12D, the frequency of °~°% o 00m  ooe 005 o1z o015
the time variation of the forces on the control cylinders matches ' ’ g ‘ ‘
that on the main cylinder. Fog=0.12D, the wake from the

control cylinders is unstable and time variations at higher frequegiy. 8 Re =10 flow past main and control cylinders: variation
cies are observed in the time histories of the force coefficientgith gap of the rms values of the unsteady force coefficients
The increase in gap results in an increase in the lift acting on thed Strouhal number
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1.20 inders. This causes a further reduction in the drag coefficient. It
Total —e— would be interesting to study the effect of the angular location of
Tr;:}:ggg oo the control cylinders. Perhaps, locating them towards the wind-
ward side of the main cylinder may result in better control as it

will increase the tilt of the lift vector leading to larger thrust.

The rotation of the control cylinders requires a power input.
This power requirement increases slightly with increase in gap.
However, the power to overcome the drag first reduces and then
increases with gap. It is found that the gap is an important param-
eter in the design of such control strategies. A value gof
=0.10M has been found to be close to optimal. It results in a
very significant reduction in power savingslose to 70% Too
small a value of gap limits the circulation that the rotating cylin-

| \ i \ ders generate. Very large values of gap result in the unsteadiness
[ )00 J o S SE SN SIS IR W AN I I S A T S A S . K .
000 003 006 009 042 045 of the_ near wake of the control cylinder, thereby reducing their
g/D effectiveness.
Such flow control is also quite effective in reducing flow-
Fig. 9 Re=10* flow past main and control cylinders: variation induced oscillations because it leads to a reduction in the unsteady
with gap of the time averaged power coefficient forces as well. It is expected that the actual power saving will be
smaller than the values reported here. Three-dimensional effects,
including those arising from the end wall effects, may reduce the

variation of the lift coefficient acting on the main cylinder. Thecontrol effectiveness.

best flow control is achieved fg=0.10M. The rotating control

cylinders cause an increase in the Strouhal number compared to

that for an isolated cylinder. From the figure it appears that, t

smaller the rms value of the force coefficients, the larger t cknowledgment

Strouhal number. A number of researchers have suggested the idg@artial support for this work has come from the Department of

of “universal” Strouhal number where the characteristic length iScience and Technology, India.

the distance between the separation points of a bluff bdoly

example, Griffin(1981) [21], Roshko(1961) [22]). Flow control

leads to narrowing of the wake and therefore if one uses the cyl- f

inder diameter as the characteristic length, a large value of t erences

Strouhal number is expected. Additionally, the case with optimall1] CAB;(\!A EIJH?:T, Z/l ;ndﬁgshnelé E2>-9M-, 1991, “Separation Control: Review,”
i ; ; . Fluids Eng. pp. 5-29.

gap. I_S associated with the narrowest wake and should thereforﬁ] Modi, V. J., 1997, “Moving Surface Boundary-Layer Control: A Review,” J.

exhibit the largest value of Strouhal number. Fluids Struct. 11, pp. 627-663.

The total power coefficient, shown in Fig. 9, includes the con-[3] Modi, V. J., Fernando, M. S. U. K., and Yokomizo, T., 1991, “Moving Surface
tributions from drag on all three cylinders and moment acting on  Boundary-Layer Control: Studies with Bluff Bodies and Applications,” AIAA
the two control cylinders. The power input required for the rota- “h‘/-'bi?' bp 1"'5(13;1?6{“”9 B. and Yokomizo, T., 1962, “Drag Reduction of
tion of the two _Cy"nders 'ncreaseS_W|th gap. It is eX_pECtEd that ™ gyt Bodies through Momentum Injection,” J. Aircr29, pp. 429-436.
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Helical CoIIapse of a Wh|r||ng Elastic DNA supercoiling,[6-8], are special solutions of a rod with cy-

lindrical constraint and therefore occur naturally within our wider

Rod Forced to Lie on a Cylinder formulation.

2 General Formulation

G. H. M. van Qer He”den. . . Let {i,j,k} be the basis vectors of a right-handed orthonormal

Center for Nonlinear Dynamics, University College coordinate system rotating with respect to an inertial frame with

London, London WC1E 6BT, UK constant angular velocity aboutk which is pointing along the
axis of the cylinder. We also introduce the corresponding cylindri-
cal coordinatesr(,#,z) with basis vectors€ ,e,,e,) given by

W. B. Fraser € =cosfi+singj,
School of Mathematics and Statistics, The University of

Sydney, NSW 2006, Australia €=~ sin6i+coso), (1)
e,=k.

The dimensionless equations for the rate of change of linear and

angular momentum can then be written(ase[9] for detail9

1 Introduction O D?R+2kXDR+kX (kXR)}=(TR'+V)'—Fe — uFe,,
Whirling rods in a constrained environment are encountered in 2
a variety of industrial applications, e.g., rotating drill strings con- £202(DH+kXH)=(QR’+M)'+R'XV—guFk, (3)
fined to narrow boreholes in oilwell drillingsee, e.g.[1,2] for
recent referencesand in textile yarn manufacturing processe&here
such as two-for-one twisting where the yarn is constrained by a 1 1
cylindrical guide surfacd,3]. Hés= - 6s{ R’ + z[R'X(DR’'+kXR’)]
Most analytical studies on the buckling of drill strings have 2 2
assumed continuous contact between the drill string and the bokgthe angular momentum vect@elative to the center of majssf
hole wall. In fact, in most cases a helical shape for the drill stringie rod elemenss at position vectoR(s,t). s denotes arclength,
is assumed|2]. In previous work by one of ug4], continuous t time. T is the tensionV the shear forceQ the torqueM the
contact was considered but no assumption on the shape of the e@iding momentD ()= d( )/t with respect to the rotating refer-
was made. An interesting feature found was the collapse of the refce frame, ()=d()/ds, —Fe, the force per unit length of rod
into a helical configuration at certain critical loads. that the cylinder exerts on the rod in the direction normal to the
In this note we extend the analysis [i#] to allow for steady cylinder (with F positive when this force is pointing inwardand
motions of a periodically driven rod.e., the configuration of the ,/ the coefficient of friction between the rod and the cylinder. Note
rod is stationary when viewed in a reference frame that rotatgat in the frictionless case the cylinder reaction force has only a
with a constant angular velocjtyAs we shall be restricting our component normal to the cylindes,R’ is the angular velocity of
attention to unshearable linearly elastic rods of inextensible cefs rod element about the rod axis.
terline and uniform symmetrical cross section, we take this 0ppor-1q these equations we add the following constitutive and con-
tunity to present the formulation of the problem using the tradis,gint equations:
tional notation of engineering structural mechanics, rather than the
Cosserat formulation if4]. We also explore the quasi-statical R™-R'=1, (4)
helical collapse of the rod more carefully as a function of the

,0 =
physical parameters. Lastly, we point out that the so-called bal- R™-V=0, ®)
anced ply solutions in recent studies of yarn twistitd and M=R'XR", (6)
Contributed by the Applied Mechanics Division ofiff AMERICAN SOCIETY OF R"-e=0, (7)

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . . S - .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 2€XPpressing, respectively, inextensibility, unshearability, linear
2001, final revision, May 6, 2003. Associate Editor: N. Triantafyllidis. elasticity in bending, and the cylindrical constraint.
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Fig. 1 Phase-plane diagrams for the equivalent oscillator (16) subject to (19) for r=1, K=0.8
and (a) P=P.=0.1683, (b) P=0.1322. Notice the saddle connection between the origin and the
nontrivial fixed point at  ¢=0.4660 (26.70°) in (a).

The Eqs(2)—(7) have been made dimensionless with respect to
the bending stiffnes® and mass densityn of the rod, the time T=To— 5 (R"R"), 13)
scale 1b and an arbitrary characteristic length schlée.g., the
radius of the yarn package in unwinding or the radius of the caghereT,, the integration constant, is a reference tengiaken at
ing in case of an oil drill pipe The dimensionless parametéds one of the ends of the rod, for instance
and e are thus given by Because is constant it follows from(1) that the position and
(unit) tangent vectors can be written as

QZ_msz4 _a
T B ' T ®) R=r cos#i+r sin 6]+ zk, (14)
wherea is the radius of the rod. R’ =r6"e,+z'k=sin ¢e,+ cosgk,

In the case of a steel drill pipe of radius 0.065 m rotating at say ) ]
2 Hz in a casing of radius 0.45 M)2~0.2 ands?=0.02 so that Wheregs the angle between the tangent of the rod and the axis of

it may be reasonable to neglect the rotary inertia terms relativeft cylinder. Substitution of12), (13) and(14) into (11) gives
the translational inertia terms. Dimensions quoted here are com-

patible with the ranges of physical pzirgameters giveij. In the P="T,cosp— 3 sin'¢ cos¢ +¢'2cos
case of yarn twisting dynamics~10"°, [3,9]. 2 r2
, Qs ¢
3 Reduction of the Problem: The Equivalent ~(Cosd)"+ ———. (15)

Oscillator . ' , : ) .
This equation can finally be integrated to arrive at an equivalent
We now consider the steady-state problem soB@t=0, and oscillator for the anglep which can be written as
in the light of the above discussion we neglect the rotary inertia.
We assume that the force and moment loads at the remote ends of

12 —
the rod are applied in the direction of the axis of the cylinder, §¢ +V(¢)="To, (16)
though not necessarily coaxial. We also ignore frictigrn=0). ) . ) ) )
Thus Eqgs.(2) and(3) reduce to with the “potential energy"V(¢) given by
TR’ +V)' =(F-Q%)e==Ge,, 9 K sin sing cos¢  sin’
( )'=( )& =Ge, (9) V(d)=P cosg s SNG_ Qsind cosé 2¢, an
(QR")'+M'+R’'XV=0, (10) r r 2r

whereG is the effective reaction force andis now the constant whereK is the applied end moment. This result agrees with the
(dimensionlessradius of the cylinder. These equations can béderivation in[4].
simplified in several steps as follows. First form the scalar productAll physical quantities, such aB, T, V, andM can now be
of k with (9) and integrate to arrive at expressed in terms of the angle and its derivatives. A final
, quantity that will be useful later is the effective reaction fofge
(TR"+V)-k=P, (1) for which we have, from9),
whereP is the applied end force. Next take the scalar product of _ ” ,
R’ with (10) to getQ’ =0, implying that the twisting mome@ is GC=(TR"+V')-&. (18)
constant along the rod. An expression for the shear force is of- Soluti d Helical Coll
tained by forming the vector product &' with (10) and using olutions an elical Lollapse
(6): Fixed points of(16) are given by solutions 0¥/’ ($)=0 and
_ IR T (BRI .PIR! L R correspond to helical solutions with pitch angi2— ¢ and axial
V=Q(R'XR) —[(R™R")R"+R"]. (12) wavelength\ given by =27r/|tan¢|. By (14), the helix is right-
The formation of the scalar product &' with (9), the use of handed if 6<p<m/2 or —a<p<—m/2, and left-handed ifr/2
V’-R'=-V-R" (sinceV-R’=0) and(12) followed by integration <¢<w or —m/2<$<O0; it is in tension if|p|<a/2, and in com-
gives an expression for the tension pression ifm/2<|¢| <.
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Fig. 2 Load-deflection characteristic and evolution, under varying load P, of the localized
solution with initial ~ ¢>0. There is a critical collapse load corresponding to a right-handed
tensile helix at P,=0.1683. The triangle indicates where the rod starts to go backwards on

the cylinder over some section of rod. This is soon followed by self-intersection, so the
dashed part of the curve, including the second critical load at P=0.5123, is nonphysical. D
is the dimensionless end shortening. (r=1, K=0.8.)

We shall only consider values of the integration constants thegases to be valid. In terms & the contact condition i$>
admit the straight rod¢=0) as a solution. This means that we—me?r, so the critical liftoff level is set by the centrifugal force,

have to choose and contact can always be preserved by using a sufficiently high
—K 19 driving frequencyo. _ _ _
Q=K. (19) For a helical solutior(18) and (16) yield relatively simple ex-
The origin is then a saddle P> 0 (straight rod in tensionand a pressions foiG and P:
center ifP<0 (straight rod in compression . .
Figure 1 shows two phase portraits for the oscilldfi®), sub- G- sing(1—cos¢)(sinp(1l+cos¢)—rK)

ject to (19), takingr =1, K=0.8. Generically, the origin has two r3 ' (22)
homoclinic orbits that connect the saddle to itsalf in Fig. 1b)).

These solutions correspond to asymptotically straight localized —rK(1—cos¢)+2 sirf ¢(rK —sin ¢ cose)
solutions. At special values of the parameters, howevéretero- P= (23)

2
clinic) connection may be formed between the origin and a non- resing
trivial saddle(as in Fig. 1a)). Since this nontrivial saddle corre- We consider three special cases:
sponds to a helix, these critical parameter values define loads ; g _ ; ;

which the rod collapses into a helix. This is illustrated by theag' iﬂz (Srgjl'ggvrg:’e"; S0 F;Za'gf('lnfertlf;?:'?aﬁ,e'_ .
load-deflection diagram in Fig. 2 which shows the end shortening“ g: p=ml2, G= I

D, defined by So G drops to zero when the applied axial momé&hpro-
' o vides the bending moment required to hold the rod in a ring
D=f (1—cos¢(s))ds, (20) of radiusr.
- 3. the free helix:G=0, rK =sin¢(1+cos¢), P=(sir? ¢)/r%.
as a function of the applied load for one of the homaclinic orbits 1 hese are well-known relations for a Kirchhoff rod bent into
to the origin in Fig. 1b)) (the one withg>0). As the critical load a helix of radiusr (see, e.g.[11)).
P.=0.1683 is approached the rod coils up @dliverges. AtP. . .
the solution is a puréinfinite) helix. 5 Discussion

In [4] it is shown that there are at most two critical collapse Although our work does not give information on the stability of
loads, one of which involves self-intersections. The physical cahe solutions considered, the presence of the cylindrical constraint
lapse loadP. only exists for 6<srK<0.9648 and 1.9098K/\P  is expected to make a number of them stable and therefore ob-
<2, or, equivalently, servable in practicéthis was the experience with constrained Eu-

. ler buckling in[12]).
1.9093/5<Ksmun{0.9648f,2\/5}. (1) The analysis can be extended to the case of a rod of nonsym-
The angle¢ of the critical helix varies between &KE0) and metric cross section. However, since one has to keep track of the
0.7320 K=0.9648). This means the helix is always right-handedrientation of the cross section a director formulation as employed
and in tension. Noncritical helices of course are less constrain@d/4] is required which complicates matters. It is also no longer
in their characteristics. possible to reduce the system of equations to a planar oscillator as

G is constant along the central helical part of the solution arid Section 3. Instead, one gets so-called spatial chaos with infi-
changes rapidly in the transition to the straight terminal sectiongely many localized solutions including multipulse ones. For
whereG tends to zero. For a rod inside a cylinder, as in the drithore on this the reader is referred[tS8].
string problem, wall contact will be maintained as longFas 0. The work described in this note is relevant for ply solutions as
WhereF drops to zero the rod will lift off and the present modehave recently attracted a good deal of interest in studies of yarn
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twisting, [5], and DNA supercoiling[6—8]. In its simplest forma 1 Introduction

ply consists of two segments of rod in continuous contact along arpe poplinear characteristics of the large-amplitude asymmetric

straight line, the ply axis. Thus a ply is a special case of a rgl,, 5| vibrations of the isotropic thin circular/oval rings have

(more precisely, a pair of rogisvinding on a cylinder of radius poop given little attention in the literatuiid], compared to that of

equal to the radius of the rod, one segment providing the feq“"ﬁﬁam and plate elements. The notable contributions are the work

pressure forc& (now negative) to a 180° rotated copy of itself. of Evenser{2], Dowell [3], Sathyamoorthy and Panda[di, and

Indeed,(16) is a generalization of Eq2.41) in [6] for a balanced Prathap and ' Pandale[B]t In the work of Evenser[z]’ and

(ie., unloade):i_ply to the case of nonzero end loading. $&é] Sathyamoorthy and Pandaldi, the nature of nonlinear vibration

for more on this. behavior is predicted based on the inextensionality assumption,

whereas such assumption is relaxed by DoW&]land Prathap

and Pandalaj5]. All these analyses are based on Galerkin tech-

___nique with two-mode approximation. It is concluded in the work

(1] g“fﬁ;ici',,\gv"Szr&ic}’v\zggézi" 1922'3"?25“99“@" Model for Drill-String 5¢ chen and Babcock6] that analytical methods with assumed

[2] Hﬁang, N. C., and Pattillo, Ppg 2000, “Helical Buckling of a Tube in andisplacement fields, without proper judgement, may even qualita-
Inclined Wellbore,” Int. J. Non-Linear Mech35, pp. 911-923. tively predict different type of nonlinear behavior. Numerical

(3l gfaseLf, \r%oi” ég?%%ﬂ the Eggaznzigs of the Two-for-One Twister,” Proc. Rmethods such as finite element procedure may be preferred over

[4] v:r?.de(r) Heijd’en, G.H. l\’/I.',)pZIOOL “The Static Deformation of a Twisted Elastié[h.e analytlcal methOdS in the sense that there is no. need.for ana
Rod Constrained to Lie on a Cylinder,” Proc. R. Soc. London, Se3¥, pp.  Priori assumption of mode shapes and such analysis for rings ap-
695-715. pears to be lacking in the literature. Furthermore, there is no in-

[5] Fraser, W. B., and Stump, D. M., 1998, “The Equilibrium of the Convergencggrmation available in the existing literature on the participation

Point in Two-Strand Yarn Plying,” Int. J. Solids Struc85, pp. 285-298. ; : - ) : -
[6] Coleman, B. D., and Swigon, D., 2000, “Theory of Supercoiled Elastic Ringgf various asymmetric modes while vibrating the oval ring at large

With Self-Contact and Its Application to DNA Plasmids,” J. Elagq, pp. amplitudes in a particular mode.

173-221. In the present paper, a shear flexible curved beam element using
[7] Stump, D. M., Fraser, W. B., and Gates, K. E., 1998, “The Writhing of Circubic B-spline functions developed recenfly], is employed to

Ezfégogse}sﬁgof E;dzszlg;_d;{;%a Cables to DNA Supercoils,” Proc. R- Sy g1y 76 the nonlinear free vibrations of isotropic oval rings. The
[8] Stump, D. M., and Fraser, W. B., 2000, “Multiple Solutions for Writhed Rodsdynamic responses are obtained using Newmark's integration pro-

Implications for DNA Supercoiling,” Proc. R. Soc. London, Ser.486 pp. cedure coupled with Newton-Raphson iterations. The amplitude-

455-467. frequency relationships are estimated from the response history.

[9] Clark, J. D., Fraser, W. B., and Stump, D. M., 2001, “Modelling of Tension i ) : ; ;
Yam Package Unwinding.” J. Eng. MatH, pp. 59-75. "The amount of participation of various modes in the total response

[10] Jansen, J. D., 1991, “Non-Linear Rotor Dynamics as Applied to Oilwell Drill-\S evaluated using modal expansion approach.
string Vibrations,” J. Sound Vib.147, 115-135.
[11] van der Heijden, G. H. M., and Thompson, J. M. T., 2000, “Helical and
Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric
Case,” Nonlinear Dyn.21, pp. 71-99. i
[12] Holmes, P., Domokos, G., Schmitt, J., and Szefngrd., 1999, “Constrained 2 Formulation
Euler Buckling: An Interplay of Computation and Analysis,” Comput. Meth- ~ A curved beam is considered with the coordinatesong the

ods Appl. Mech. Eng.17Q, pp. 175-207. xis of the beam andalong the thickness direction. The tangen-
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Fig. 1 Nonlinear amplitude frequency relationship for isotropic rings with ro/h=100

where ¢, and ¢ are the in-plane normal and transverse sheand (2) and following the procedure outlined in the work of Ra-
strains. The subscript comma denotes the partial derivative wjttsekaran and Murraf8], the finite element equations thus de-

respect to the spatial coordinate succeeding it. rived are
The strain energy of the ring can be expressed in terms of the )
field variableu,, w, 6, and their derivatives. The kinetic energy [MK S+ [[K]+ (1/2)[N1]+ (1/3)[N,]{ 6} ={0}. 3)

includes the effect of in-plane and rotary inertia terms. The gov-

erning equations obtained using the Lagrange’s equation of nidere,[K]and[M] are the linear stiffness and mass matri¢és;]
tion are solved based on finite element methi@dl,Using Eqs(1) and[N,] are nonlinear stiffness matrices, linearly and quadrati-

=0 n* =4
1.100 Total Response 0.000 +13 1.000 n
-1.300 0250 -1.000
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Fig. 2 Modal participation factors for circular ring [¢=0, r,/h=100, n}iwq =41
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Fig. 3 Modal participation factors for oval ring [¢=0.5, r,/h=100]. (A) Niciea=5 (SA Mode); (B) Nigiwqa=6 (SS Mode); (C)
N citea =6 (AA Mode).

cally dependent on the field variablels)} and {5} are the ac- frequency values obtained from the present formulation for linear
celeration and displacement vectors, respectively. The resultingrd nonlinear vibration of circular rings have been compared with
nonlinear Eq(3) is solved for the dynamic response histories byhe analytical solutiong5,9], and excellent agreement was seen.
varying the initial displacement vectors proportional to lineagqr the sake of brevity, such comparisons are not presented here.
flexural modes. The analysis of oval rings is carried out considering four different
type of spatially fixed asymmetric modes such(iasnodes sym-
3 Results and Discussion metric about both geometrical symmetry axes with even number
Based on progressive mesh refinement, cubic B-spline secti@icircumferential wavesr()—SS, (i) modes antisymmetric about
with g=60 is found to be adequate in modeling the full ring. Théoth axes with even—AA (iii) modes of oddh symmetric about
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one and antisymmetric about other axis—SA diwl modes of Coincidence of Boobnov-Galerkin and
odd n antisymmetric about one and symmetric about oth

axis—AS, Tlosed-Form Solutions in an
In Fig. 1, the nonlinear frequency ratios obtained here for tf}A\pp"ed Mechanics Problem

rings ({=0 and 0.3 considering modes having different are
compared with those of the approximate analytical methods. Al-
though the present results are fairly in close agreement with theElishakoff

available solutions, the difference in the results increases with thrapt. of Mechanical Engineering, Florida Atlantic

increase in the amplitudes of vibration. This discrepancy is attri?lniversity 777 Glades Road. Boca Raton
uted to the limited number of terms retained for displacement B 33431_'0991 USA ' '

the analytical models. . .
Next, the degree of participation of various natural moges- €-Mail: elishako@fau.edu
symmetric moden=0; asymmetric modes dominated with nor- )
mal deflection,n,; and asymmetric modes dominated with tanM. Zingales
gential deflectionn,) in the total response, while exciting theDip. di Ingegneria Strutturale e Geotecnica, Viale delle
particular asymmetric mode, is examined in terms of modal pagcienze, Palermo 1-90128, Italy
ticipation factors(7).
The responses of different modes are presented in Figs. 2 and 3
for the circular({=0) and oval ringg¢=0.5). It is observed from . I . .
these figures that the amplitude of the total response of the ring'irfS shown that the utilization of the Filonenko-Borodich set of

the outward direction is less than that of the inward direction. Tiignctlons, as the comparison functlpns_, in the_ Boobnov-Galerkin
method leads to the result that coincides with the closed-form

participation of co_ntra_ction_al d(_)uble frequency axis_ymmetrig lution for the clamped-clamped uniform beam under uniformly
mode in asymmetric vibrations is brought out here, instead llstributed load. It is hoped that this remarkable, direct coinci-

presuming such mpde i.n the analytical ”.‘ethoo,'s- In.additioml ©4ence could be used in graduate courses and books on mechanics
=0 mode, the participation of modes havikg (k is an integern of solids [DOI: 10.1115/1.1598474

is the excited onecircumferential waves, is demonstrated in Fig.

2 for the circular ring. However, it is revealed from Fig. 3 that, for

the oval case, the participation of asymmetric modes of diffarent )

highly depends on the type of excited asymmetric mode. The par- Introduction

ticipation of all SS modes while exciting a particular SS mode, Since the germ of an idea in 1913 by Boobnov and the first
participation of all SS as well as AA modes while exciting a Afpaper by Galerkirf1] two years later, numerous investigators in
mode, and participation of all SS as well as SA modes whilaarious fields of engineering sciences adopted this technique
exciting a SA mode are brought out. The nature of the participathowing its unusual potential2,3]. The Boobnov-Galerkin

ing lower SS modesn< ngied iS Of contractional type whereas method was proved to converpg for a large class of mechanical
higher participating SS modes ¥ nq,.id have both contraction problems to the exact solutioi—9]); a pertinent description of
and expansion phases. For other participating maées and the method and actual applications have been reported if Hef.
SA), irrespective ofn compared tgyjeq, DOth contraction and Moreover, the equivalence of the Boobnov-Galerkin and
expansion phases are involved in their responses. In general, f@yleigh-Ritz methods was shown by Sing&0] and several
response frequencies of participating modes anexcited are Other i[‘lvestigators. E|Ishak0ff and Léﬂ] demonstrated that, fOI’
lower whereas it is higher for the participating modes with the uniform beams, simply supported at both ends, the Boobnov-
>Neyeiteg While comparing with that of excited mode. Further-Galerkin method and the Fourier series method lead to the iden-

more, for the oval ring case, the contribution of lower asymmetrfical solution. Note also that Galerk{ri] considered bending of
modes ,,n,) is significant compared to that of the higher””'form beams clamped at both ends using the set of functions

modes. However, the contribution of modes is very less for pj(x)zl_(_l)J cog2j mx/L), (1)
circular ring. It is hoped that the present study is very useful for . . ..
9 b P y y hereP;(x) are comparison functions=length of the beanj,is

the researchers while accurately modeling and analyzing ti’i’]e serial number of the comparison function 2l Coor-

closed noncircular structures. dinate measured from the mid-span of the beam. He summed up
the series resulting from his method and showed that the results
coincided with the exact solution, obtainable by direct integration.
In this paper we address ourselves to the interrelation of the
References Boobnov-Galerkin method and the exact solution in the beam de-
[1] Sathyamoorthy, M., 1998\onlinear Analysis of Structure8oca Raton, FL. flection problems. Namely we show the COInCId_e_nce of t_hese two
[2] Evensen, D. A., 1965, “A Theoretical and Experimental Study of the NonlintN€thods for clamped-clamped boundary conditions, using an al-
ear Flexural Vibrations of Thin Circular Rings,” Paper No. NASA TR R-227.ternative set of functions proposed by Filonenko-Borodit?.
[3] Dowell, E. H., 1967, “On the Nonlinear Flexural Vibrations of Rings,” AIAA
J.,5, pp. 1508-1509.
4] Sathyamoorthy, M., and Pandalai, K. A. V., 1971, “Nonlinear Flexural Vibra: i ictri
! tionsyof Oval Igings,".]. Aeronaut. Soc. India3, pp. 1-12. 2 Clamped_C|amped Beam Under Unlformly Distrib-
[5] Prathap, G., and Pandalai, K. A. V., 1978, “The Role of Median Surfact/téd Load

Curvature in Large Amplitude Flexural Vibrations of Thin Shells,” J. Sound Let us consider a clamped-clamped uniform beam under static
Vib., 60, pp. 119-131. p p

[6] Chen, J. C., and Babcock, C. D., 1975, “Nonlinear Vibration of Cylindricaltransverse Ioad](x). The differential equatlon of the transverse

Shells,” AIAA J., 13, pp. 868—876. deflectionw(x) of the beam reads
[7] Patel, B. P., Ganapathi, M., and Saravanan, J., 1999, “Shear Flexible Field- 4
Consistent Curved Spline Beam Element for Vibration Analysis,” Int. J. Nu- Eld*w(x)/dx*=q(x) v

mer. Methods Eng46, pp. 387-407.
[8] Rajasekaran, S., and Murray, D. W., 1973, “Incremental Finite Element Ma- Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
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with E andl, respectively, the modulus of elasticity, and the mo- A +3%A;—A3)=0,
ment of inertia of the beam cross section with respect to the neu- 34A;+ 5% A~ Ag)=0
tral axis. The boundary conditions associated with the transverse ST TR

displacementv(x) read (13)

(1) A1+ (1 +3)*(Agj 1~ Agj+3) =0,
w(x)=dw(x)/dx at x=0, x=L, 3)

L being the length of the beam. For the uniform transverse lo#dere Eq.(8) has been taken into account and integrals involving
q(x)=qo, displacementv(L/2) in the mid-span is given by the termsqg(x) have been evaluated yielding

well-known formula L | QoL if j=0
P; = . 14
W(L/2)=qoL*/384E| ) fo AIPIAX=] 5 o (14)
obtained by direct integration of E¢R) with attendant boundary Solution of the algebraic system in E(L3) is trivial, that is,
conditions in Eq.(3). odd-numbered constants; ., ; are identically vanishing, and the
The Boobnov-Galerkin solution of Eq2) is achieved by approximate transverse displacement of the beam axis may be
choosing approximate solutiom,(x) in the series form: rewritten after some straightforward manipulations as follows:
n
n
W)=, AP;(X). (5) an(X)=Ao+ZJ (Agjr2—Agj)cog2(j+1)mx/L].  (15)
=0 =

Herein the comparison functioR;(x) is represented in the fol- Solution of the algebraic systems in Hq2) reads

lowing form: K qoL? 1
Azn= = ;
P,j(x)=cog2jmx/L)—cog2(j+1)mx/L], (6) 2 (n+1)* 8#*El (n+1)*
Poj1(x)=cog (2j + 1) mx/L]—cog (2j + 3)mx/L],  (7) Aan-2=KI(N=1)*+ Agy, (16)
where distinction has been made between symmeiuc(6)) and
asymmetrigEq. (7)) functionsP;(x) with respect to the mid-span n 1 L4 0 1
of the beam. The set of functiof(x), j=1,2, .. .infn/2] con- AOZKE = %o
stitutes a class of complete functions in the raf@e.| (see i=o (j+1)* 8#*Elj=o (j+1)*

Stepanov[13]) satisfying the boundary conditions in E¢B);
int[+] indicates the integer part. This set was apparently first intr
duced by Filonenko-Borodichl2]. Moreover, functionsP;(x),

sinceA,n, =0 in Eq. (12) because only the firstr2terms have
Been retained. Equatidil5) can be rewritten as

j=1,2,... areguasiorthogonal, that is, the following conditions n 1 n cog2j mxiL)
hold: Wa(Xx)=K| >, ———— — . 17)
j=o (J+1)* j=1 j
‘4 e

JL d*P;(x) PL(x)dx= — 77_4 J if j—k=2 Letting n—o in Eq. (15) leads to the expression, denotediy

o Xt il ifk-j=2 o 11415
4[.4+(. +2)4] - K %% Axtxs N 3rixt 0 . 18

77 .. W, (X) = ;. 0=x=L.
JLd“Pj(x)P( d % if j=k ) 312 3.3 aLt (18)
X)dx= .

o dxt “ o it j+k Evaluation of mid-span transverse displacemen{L/2), from

Eqg. (18), yields an expression which coincides with the well-
known formula given in Eq(4).

Substitution of Eq(5) into Eq. (2) yields an errok,(x) given by Bending momenM (x), along the beam axis, can be evaluated

n d*P,(x) by means of Eq(18), bearing in mind the familiar relation
— ) IR
sn(X)_EIjZI. AJ dx4 Jo- (9) dZW(X) _ M(X) (19)
— —_
Requirement of orthogonality reads dx El
) Substituting expression faw..(x) into Eq. (19) results in
(en,Pj(x))=0; j=1,2,...n, (10)
. 27 4wt An*X?
where the scalar product is represented as follows: M(x)=—-K + (20)
3Lz L3 L4
L
(e 'p.(x)):f en(X)P;(x)dx. (11) Settingx=0, orx=L, yields the well-known expression for the
. 0 ! bending moment at the end of clamped-clamped beam, namely

) ) o M(0)=M(L)=—qgL?/12. Note, that some mathematical proper-
Equation(10) represents an algebraic systemnagquation in the ties of Filonenko-Borodich functions defined in E§) and Eq.
unknownsA; , j=1,2, ...n which reads, for eveR;(x) and odd  (7) were proved by Vilenkirf15].
comparisorP,; . 1(x) functions, respectively, the following sets of
equations: References

AO_A2:q0L4/8E| =K, [1] Galerkin, B. G., 1915, “Beams and Plates,” Vestnik Inzhenefwpp. 897—
4 _ 908, (see alscCollected WorksUSSR Academy of Sciences Publishing, 1952,
2 (AZ_A4)_(AO_A2)*O, pp. 182—183
s (12) [2] Duncan, W. J., 1937, “Galerkin’s Method in Mechanics and Differential Equa-
(j+ 1)4(A —Agin)— '4(A C,—A,)=0 tions,” Aeronautical Research Council Reports and Memoranda No. 1798.
l 2j 2j+2) 7] 2j-2 2j ’ [3] Duncan, W. J., 1938, “The Principles of the Galerkin Method,” Aeronautical
tee Research Report and Memoranda No. 1894.
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[4] Mikhlin, S. G., 1964 Variational Methods in Mathematical Physjd&ergamon \whereT is the temperaturd,is time, x is the coordinate from the

(5] Egeﬁss,'\loj‘f"{géﬁ The Analysis of StructureWiley, New York thermally loaded surface, aridl is the thermal diffusivity that is

[6] Kantorovich, L. V., and Krylov, V. I., 1958Approximate Method for Higher assumed to be independent of temperature. The initial and bound-

Analysis IntersciencgEnglish translation New York. ary conditions of the problem are
[7] Ishlinski, A. Ju.(Editor), 1975,Advances of Mechanics of Deformable Con-
tinua (dedicated to the 100th Anniversary of the Birth of B. G. Galexkin T(X O) =0 (2a)

Nauka, Moscow(in Russian.
[8] Strang, G., and Fix, G. J., 1978n Analysis of the Finite Element Method
Prentice-Hall Englewood Cliffs, New Jersey. JT
[9] Leipholz, H. H. E., 1976, “Use of Galerkin’s Method for Vibration Problems,” —(h,t)=0 (2b)
Shock Vib. Dig.,8, pp. 3—18. IX
[10] Singer, J., 1962, “On the Equivalence of Galerkin's and Rayleigh Ritz Meth-
ods,” Journal of the Royal Aeronautical Socie6g, p. 592. _
[11] Elishakoff, I., and Lee, L. H. N., 1986, “On Equivalence of the Galerkin and T(O’t) TS(t) (ZC)
Fourier Series Methods for one Class of Problems,” J. Sound Yii®, pp. 3 . .
174-177. where h is the thickness of the slab anfi(t) is the surface
[12] Filonenenko-Borodich, M. M., 1946, “On a Certain System of Functions anthermal-loading that is an arbitrary function of time. If a unit
its Applications in the Theory of Elasticity,” Prikl. Mat. Mekh10, pp. 193— step-loading,‘l’s(o,t) =constant is assumed, E@.) can be solved

208 (in Russian. . H e
[13] Stepanov, V. V.. 1945, “On Some Complete Non-Orthogonal Systemz  INtO the following form as shown by Austif6]:

ceedings of the USSR Academy of Scigndas XL VIII, No. 6 (in Russian.

[14] Gradshteyn, I. S., and Ryzhik I. M., 198Tables of Integrals Series and ~
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[15] Vilenkin, N. Ya., 1952, “On Some Nearly Periodic Systems of Functions,” ’ S =1 K
PMM, 16(3), pp. 812—814in Russian.
where
Thermal Stresses in an Infinite Slab - S(Q x—h) "
. = Cco
Under an Arbitrary Thermal K “h
ShOCk 4(71)k+1
AT ak-1) (40)
A. E. Segall
Associate Professor, Engineering Science and Mechanics, = m(2k—1) (40)
The Pennsylvania State University, University Park, 2
PA 16802. Mem. ASME 5
, DQg
b= (4d)

h? -’

Introduction
The resulting step response can then be used as a kernel with

A number of studies on the thermal shock behavior of ﬁnitj% hamel's relationshigFodor([7]) for a mor neralized
thickness slabs with the temperature varying through the thickn iufilon? S refations odo ora more generalize

have been conducted over the years by researchers such as ABT
cht[1], Chen[2], and Nied[3], to nhame just a few. However, a ¢
review of these solutions reveals that the transient thermal loading T(x,1)=H(0)D(x,t)+ f
is usually restricted to either a step or linear function of time

whereas many thermal shocks are asymptotic in féW@dula

et al.[4] and Tu and Segd]b]). Consequently, the actual time andto determine the temperature resporibg,t) to an arbitrary ex-
magnitude of the maximum stress may vary significantly from agitation H(0t). The front term, H(0) represents the step-
overly conservative prediction based on step loading. From aRcitation atx=0 while ®(x,t) is Eq. (5) with T¢=1. Generali-
engineering and design perspective, this shortcoming can be critition of the excitationH(0t) is possible via a polynomial
cal since reliability and failure predictions can become signifeontaining both integral and half-order terms upNit order:

cantly skewed. Because of the need to realistically address the

time-dependent nature of thermal shock, a study was undertaken N

to derive transient stress solutions for an infinite-slab subjected to  H(Ot)=ag+at¥2+a,t+ast3?+ ... = >, at"  (6)

an arbitrary thermal loading. The results presented herein show n=0

how generalized solutions are possible if the materials properties ) o . )

are assumed constant, the surface temperature history can be"i&rea, represent polynomial coefficients determined using least

scribed by a polynomial, and the temperature gradients are fgluares methods. Given the form of E¢3)—(6), the transient
stricted to the thickness coordinate. response to a system initially at a temperature of zero under a

generalized polynomial excitation becomes

dH(0,7)

P d(x,t—7)dr (5)

Analytical Considerations

N
n
For a finite-thickness slab, the partial differential equation gov- T(X,t)=ayb(x,t) + 2 an| t"?— = 8,(x,1) )
erning the transient temperature distribution is n=1 2
PT 14T where the response functiod(x,t) for n=0,1,2 .. .N are de-
= b (1) fined as
ax
So(X, 1) =D (x,t) (8a)

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . - . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 16‘,N|th the remaining half and integral-order terms defined as
2002, final revision, Mar. 31, 2003. Associate Editor: J. R. Barber. follows:
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1.2 —— Austin [6]

v Polynomial Approximation
1.0 4 x/h=0
0.8 xh=0.2
T(X,T)—To 06 - xh=0.4
T,-T,
x/h=0.6
0.4 4
x/h=0.8
02 4 xh=1
0.0 P=mgp—ip——1 T T T
0.00 0.02 0.04 0.06 0.08 0.10
tD
e

Fig. 1 Transient temperature distributions as a function of nondimensional time and location
through the thickness of the slab

0

-1t V0 ! 1
By = L1283, Qk<s>—c{ f T‘l’ze‘bi(““dr]—\/g (11)
k 0

5i-1 = p2i-D) (s+hbd)

2(j—i)-3 © ) . N ) )
Tz v, wheres is the Laplace variable. Once in this form, the inversion
(=1)'———¢(i.2] -3)>, T can be approximated by using the ten-term Gavor-Stehfest inver-
2 k=1 bj sion technique advocated by W8

j-2
+2
i=o

(8b) 0 =
Ln(2) T
. UO~——2 en| = (12)
o W, e bt L= sk (% +b?)
Sy 0=(~DxX(-1-DZ — e
. K where the modified Laplace variabdé is
J— oo
o A\
+2 (1)t (i,j-1) D, Sary| 89 Ln(2)
= =1 b2 sk = m (132)

t

with the subscript integer set &s-1,2,3 .. .N. It is important to
note that forj = 1, the second term in E@8b) is equal to zero for
the unlikely summation over the range it 0— — 1.

The reoccurring functiong(z,\) and{(»,\) found in Egs.(8b)

and the series coefficients,,, can be determined by the follow-
ing relationship:

and (8c) are defined as follows: Pm=(—1)"P2
\! x mmgpm a”(29)! .
X(y,,x):m (9a) T (p2=a)tg!(g—1)!H(m—q)!(2g—m)!
(130)
22+ 1)

(9b) In Eq.(13b), q represents the integer value ofi¢-1)/2 andp is
the number of terms in the series that is set at ten for the current
analysis. Using ten terms, E@l2) shows excellent agreement

whereT is the Gamma function. The use of half-order terms byyith numerical integration over many decades of the argument. It
the polynomial results in an additional reoccurring function thaghould also be noted that a first-order approximation developed by
includes complex arguments: y—1: Segall[9] can be employed to integrate E40) for small values

En M= F s 1= )

of time:
t—e(-hR=) [ erf(ib,\T)e it t
Q)= - L ) f 72 b= 7 pt VbR (14)
0 \/; bk 0
As an alternative to Eq(10), the Laplace Transform identity of provided the conditiorbZt>0.1 is satisfied to keep the relative
the convolution integral can be used such that error below 3%.
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Fig. 2 Transient thermoelastic distributions as a function of nondimensional time
and location through the thickness of the slab

Thermoelastic Stresses with AT=1, a six-term polynomial nearly perfectly fits the time-

Once the transient temperature-distributions are known, tﬁeg]%iﬁgrte ;r:satlorsyi/sas;hsg zﬁ?tgrymmﬁf 20%Ji2/|ev:/gsﬁ?duln.dl:?or be
stresses can be determined by the following relationsh ysIS, poly

ePdequate with lower orders deviating from the imposed

(Nied [3]): asymptotic loading. However, it should be noted that higher-order
aE [4h—6x [h polynomials would not necessarily improve the quality or accu-

oy(X,t)= —— —zf T(x,t)dx racy of the fit because curve instabilities or “wiggles” around
(1-v)| n 0 the individual date points would also develop. Hence, the po-

12—6h (N tential versatility of higher-order polynomials should be care-
" > f XT(x,t)dx—T(x.t) Lu(lli)r/]t;velghed against their tendency to meander about the data
0 .

) ) ) ) ) ) As also shown in Fig. 1, the predicted response for a thermally
WhereE IS the elaSt|C mOdu|LIS( is Poisson’s I’atIO, and IS the th|ck ma’[erial h:OOS m andD:OOSS crﬁ/s) shows exce”ent
coefficient of thermal expansion. Substitution of the transient tergyreement with the closed form expressithustin [6]) for
prevailing thermal stress: exposed surface. Figure 2 shows the resulting thermoelastic
stresses for the same materi@d= 207 GPa andv=1.8E-6/°C)

(159)

oy (X,1)= aE 4h—6x)\ 12— 6h N2—T(x,t)| (16) for the same nondimensional times and depths. For the current
(1-v) h? h3 calculations, only the first ten terms in the infinite se(igg. (3))

h were required to produce reasonable results; calculations involv-
where ing up to a 1000 terms produced no significant changes in the
N n_ calculated thermal response and the resulting thermoelastic

M=aghd,+ D, ah|t"2— 5 5n(t)} (17) stresses.

n=1
- 2 - % h? RILLE 8 Conclusions
=ag = an = -z .
02 "0 & 2 2" A series solution was derived that allows the calculation of the

] — - _thermal transients and the resulting thermal-stresses caused by an
_The redefined terms, and &, represent the response functiongrbitrary surface loading on a finite-thickness slab. The arbitrary
given by Eq.(8) with W in each infinite sum replaced by Eds.nature of the thermal loading was allowed through the use of a

(19a) and(19%), respectively polynomial that employed integral and half-order terms. The
_ A method appears well suited for complicated thermal shocks pro-
\pk:_k sin(Qy) (19a) Vided the analysis is restricted to the time interval used to deter-
Qx mine the polynomial and the thermophysical properties do not
oA vary with temperature.
= k
‘I’k:?[l—COSQk)] (19)
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Discussion: “Normal Indentation Closure to “Discussion of ‘Normal
of Elastic Half-Space With Indentation of Elastic Half-Space With
a Rigid Frictionless Axisymmetric a Rigid Frictionless Axisymmetric
Punch” (Fu, G., and Chandra, A., Punch’” (2003, ASME J. Appl.
2002, ASME J. Appl. Mech., 69, Mech., 70, pp. 783
pp. 142-147)

A. Chandra
F. M. Borodich G. Fu
L. M. Keer Mechanical Engineering Department, lowa State
Northwestern University, Evanston, IL 60208-3109 University, Ames, IA 50011

The authors presented an interesting consideration of an axiour work ([1]) was based on Green’s solutigi2]). We thank
Symmetric frictionless contact problem with the aid of mathemat{he discussors for pointing out a different approach taken by Bo-
cal software MATHEMATICA. Evidently, the use of modern anarodich 3] following the work of Galin[4]. At the time of publi-
lytical software gives a possibility to obtain new results, checkation, we were unaware of the work by Borodich. The usage of
known solutions, and correct possible misprints. However, soregr derived solution is straightforward. With modern mathemati-
papers in the field should be added to their reference list. ~  cal software, hypergeometric function will be like a regular el-

In 1939 an analytical solution for a punch described by a mementary function and the final result is easy to be obtain. It can
nomial function ofr of a positive even degree was obtained by ajso be used to check analytical expressions for possible mis-
Shtaermanl]. It is worth mentioning that after A. E. H. Love hadprints.
obtained his solution, the problem for conical punch was also As it is pointed out in the paper, the power of the “polynomial”
solved by Lur’e[2] in 1941. The problem for a punch describedtan be any non-negative number, such as 0, 2, 12, With
by a monomial function of of an arbitrary real degree was this solution, one can use multiple terms to define the punch shape
solved by Galin(see Chap. 2, paragraph 5 in RES]). Then this jnstead of a monomial function of the punch radius.
problem was also analyzed by Sneddéh In 1957 the problem e appreciate the fact that there exist numerous contributions
was analyzed by Seged]s] for a punch whose shape is repre+ this field in the Russian literature, and our understanding of this
sented by a serie@ polynomial function ofr) with integer de- work is mainly based on the books by Gladw] and Sneddon

greesa. For a punch described by a fractional power series, of [6]. Johnsor{7] also mentioned the solutions by Shtaerman and
the problem was analyzed in Rg6]. The analysis in Ref6] was  Galin in his book.

based on the Galin’s solutigi3]). It was shown that the solution
can be also used in the case when the punch is a transversally
isotropic solid and the half space has homogeneous initial stresses.
In particular, a formula similar to formulél7) was obtained.
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Discussion: DynamiC Condensation ter the simplification, the full order matric@ﬁ] and[E] in Ref.

and Synthesis of Unsymmetric [2] become - o o)
Structural Systems” (Rao, G. V., 2002, [M]=— ] [C]}, K]= (o] [K]}, @)
ASME J. Appl. Mech., 69, pp.
if the eigenproblem in Sec. 3 rather than the dynamic equations of
610—616) equilibrﬁjmpin Sec. 2 is considered. The trangformatiog matrices
[R] and[S] are the same and indicated [%]. The corresponding
Z.-Q. QUl governing equation for the transformation matrix is given by

Department of Civil Engineering, University of Arkansas,
Fayetteville, AR 72701

The dynamic condensation meth¢dd]) was successfl_JIIy eX- and the initial approximation is
tended by Ra¢2] to handle the unsymmetric systems with damp- _ _
ing. This method is very interesting and useful in the finite ele- [R]©9=—[Kgs I Kgsml- (4)
ment modeling, vibration control, etc. However, one ) . .
misunderstanding occurred when this approach was utilized in” Very simple numerical example is given to show the form of
substructure synthesis. reduced order matricgd/z] and[ Kg]. In this example, the mass,
As stated by the author in Sec. 4, the reduced order matricé&mping, and stiffness matrices are
[Mg] and[Kg] of each substructure in Eq6l6) and (17) have

[R]=[Ked " L([Mem]+ [Med[RD[Mg] K]~ [Ksml] "

the form 1 0 1 0 O
M]=[0 1 O0Of, [Cc]=|0 O O,
0] [Mund [Mond  [0] ] el

[Mgr]= v [Krl= 0 01 0 0 O 5

_[MmmR] _[CmmR] [O] [KmmR] ( )

(1) 2 -1 0

in which [Mpmrl, [Cmmrl, @and[K,mgl are the reduced order [K]=| -1 2 —1].
mass, damping, and stiffness matrices of ontesm. 0o -1 1

Actually, if the reduced order matriceM ] and[ Kg] are com-
puted from Eqs(16) and (17) as indicated by the author, theseTwo cases that the first and the third degrees of freedom are,
two matrices are generally fully populated and do not have thespectively, selected as the master degrees of freedom are con-
forms shown in Eq(1). This will be explained in detail later. sidered. The resulted reduced order matrjddg] and[ Kg] from
Hence one cannot simply convert these two matrices into the dike initial approximation and the first three iterations are listed in
placement space with the explicit forms of the reduced order méable 1. The results show that reduced order matfidég] and
trices[Mnmrl, [Cmmrl @nd[Kmrl. If the matrices on the right- [Kg] obtained from the initial approximation, that is, Guyan con-
hand sides of Eq(1) are known and those on the left-hand sidedensation, have the forms given in E8). This conclusion can be
are unknowns, the relations shown in this equation are right. Howroven simply. After two iterations, both reduced order matrices
ever, the problem is how we get the reduced matridds,grl, are fully populated. The further discussion on the dynamic con-
[Cmrl, and[K gl before we havé Mg] and[Kg]. densation of viscously damped, symmetric models may be found

To simplify the discussion, consider a symmetric problem. Afin Refs.[3—-6].

Table 1 Reduced order matrices [Mg] and [ Kg] during iteration

Case 1 Case 2
Iteration [Mg] [Kg] [Mg] [Kg]
0 0 -1 -1 0 0 -1 -1 0
-1 -1 0 1 -1 —-0.1111 0 0.3333
1 0 -3 -3 0 0.2469 —1.4815 —1.4815 0
-3 -1 0 1 —1.4815 -0.1111 0 0.3333
2 —3.3333 —4.6667 —2.4444 0.5556 0.1963 —1.5716 —1.5042 —0.0311
—4.6667 -1 0.5556 1.5556 —-1.5716 —0.1962 —0.0311 0.3512
3 —3.0183 —5.1174 —3.0159 0.6003 0.2750 —1.6296 —-1.6196 —0.04670
—5.1174 —0.6281 0.6003 1.6537 —1.6296 —0.2148 —0.04670 0.3507
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Closure to “DlSCUSSlon on ‘Dynamlc Table 1 Mg and Ky, for three iterations

Condensation and Synthesis of Case 1 Case 2
Unsymmetrical Systems’” (2003, lteration Me Kr Me Kr
0 1 1 0 0 1 1 0
ASME J. Appl MeCh., 70, p. 784 o 4 -1 0 1 -1 01111 0O 0.333
0 1 1 0 0 1 1 0
G. V. Rao 1 30 -1 0 1 -1.481 -0111 0 0.333
EMRC 607/900 Barton Centre, M. G. Road, Bangalore,
i 0 1 1 0 0 1 1 0
Karnataka 560001, India 2 .30 -05165 0 1 -150 -0.167 0 0.333
| appreciate Zu-Qing Qu for the interest shown and for making 3 0 1 1 0 0 1 10
useful comments on the contents of my paper. —4.1111 04444 0 1 -1.572 -0161 0 0333
The reduced order matricdsg andKp retain the same form as 0 1 1 o 0 1 1 0
given in Eq.(1) as the iterations progress. The computation results 10 4765 -0516 O 1 —1588 —0172 0 0333

presented by Zu-Qing Qu seem to be incorrect.
With the help of the procedure in Sec. 3 of my paper, the

computations for the first three iterations are carried out on the

numerical example cited by Zu-Qing Qu. The results of the first Table 2 Eigenvalues

three iterations are given in Table 1 hereunder.
In addition to the above, the eigenvalues are also extracted fasde

the full system and the two cases of master selection. The come. Full system Case 1 Case 2

verged eigenvalues are shown in Table 2 below.
Fgurthergto the above, | wish to add here that since the formula— —0.0542rJ0.4549  —0.0507+J 0.4553 —0.05419rJ0.4549
—0.0542-J 0.4549 —0.0507-J 0.4553 —0.05419-j 0.4549

tion in my paper finally falls into the category of unsymmetric 3 03336+ 1.2374
matrices—particularly so in the case of the mass matrix in Eq., 03336-J 1.2374
(2—the assumption by Zu-Qing Qu that the transformation ma—5 —0.11225+] 1.6996
trices[R] and[S] are the same even for a symmetric structure iSg  _ 11225-3 1.6996
not valid.
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